

CAADAPTER 4.0
USER’S GUIDE

Center for Biomedical Informatics
and Information Technology

November 13, 2007 This is a U.S. Government Work

 i

Credits and Resources

caAdapter Development
and Management Teams

Development User’s Guide Program Management

Harsha Jayanna 3 Harsha Jayanna 3 Anand Basu 2

Nick Schroedl 1 Nick Schroedl 1 Christo Andonyadis 2

Ki Sung Um 2 Ki Sung Um 2 Sichen Liu 2

Eugene Wang 1 Ye Wu 1 Sharon Settnek 1

Ye Wu 1 Eugene Wang 1 Smita Hastak 3

Wendy Ver Hoef 3 Wendy Ver Hoef 3

Charles Yaghmour 3 Charles Yaghmour 3

1 Science Application International Corporation
(SAIC)

3 ScenPro, Inc.

2 National Cancer Institute Center for Biomedical Informatics and Information Technology
(NCI CBIIT)

Contacts and Support

NCI CBIIT Application Support http://ncicb.nci.nih.gov/NCICB/support
Telephone: 301-451-4384
Toll free: 888-478-4423

caAdapter 4.0 User’s Guide

ii

LISTSERV facilities pertinent to the caAdapter

LISTSERV URL Name

caAdapter_Users https://list.nih.gov/archives/caadapter_users-
l.html

caAdapter Users
Discussion Forum

caBIO_Users https://list.nih.gov/archives/cabio_users.html caBIO Users
Discussion Forum

caBIO_Developers https://list.nih.gov/archives/cabio_developers.htm
l

caBIO Developers
Discussion Forum

Release Schedule
This guide has been updated for the caAdapter 4.0 release. It may be updated between
releases if errors or omissions are found. The current document refers to the 4.0 version of
caAdapter, released in October 2007 by the NCI CBIIT.

 iii

Table of Contents

Chapter 1 Using This Guide ..1
Intended Audience...1
Recommended Reading..1
Document Text Conventions ...1
Organization of this Guide ...2
Library and Resources Files..3

Chapter 2 Overview of caAdapter ...6
caAdapter Overview ..6
caAdapter Core Engine Architecture ...7
caAdapter Mapping Tool Architecture ...8
HL7 Overview ..8
SDTM Overview...10
Object and Data Model Overview..11
Prerequisites for Using the caAdapter Mapping Tool..11
caAdapter Installation ..12
Starting the caAdapter Mapping Tool ..12

Starting the Mapping Tool from the Binary Distribution...12
Starting the Mapping Tool from the Source Distribution ...12
Starting the Mapping Tool from the Windows Distribution ..12
Starting the Mapping Tool on the Web (WebStart) ...12

Chapter 3 Using caAdapter ..14
API Process Flow for CSV to HL7 v3 Transformation...14
API Operational Scenario for CSV to HL7 v3..15
Mapping Tool Operational Scenario for CSV to HL7 v3..16
Mapping Tool Operational Scenario for HL7 v2 to HL7 v3 Transformation16
Mapping Tool Operational Scenario for Regulatory Data Services Module..............................17
Mapping Tool Operational Scenario for Model Mapping Service..17

Chapter 4 CSV To HL7 v3 Mapping and Transformation..18
caAdapter Mapping Tool Process Flow...18
caAdapter Mapping Tool Common Features ..19

caAdapter Mapping Tool Interface ..19
caAdapter Mapping Tool Validation ..22

Source Specification ..23
Segmented CSV Specification ..23
Step-by-Step Instructions ..23

Target Specification ...28
HL7 v3 Specification..28
Overview of HL7 v3 Specification Tab ..29
Defining inline Text ..32

caAdapter 4.0 User’s Guide

iv

Defining Units of Measure ...32
Defining Default Data ..32
Defining Object Identifiers (OIDs)..33
Adding Clones to the HL7 v3 Specification ...34
Adding and Deleting Multiples to the HL7 v3 Specification...35
Updating Abstract Data Types in the HL7 v3 Specification...39
Enabling and Disabling Force xml with an Optional Clone ...40

Map Specification ..44
Business Rules..44
Step-by-Step Instructions ..45

HL7 v3 Message..56
Business Rules..56
Step-by-Step Instructions ..57

Transforming an HL7 Message into a CSV Format ..60
Business Rules..60

Chapter 5 HL7 v2 to HL7 v3 Conversion ...64
Understanding the Mapping and Transformation Processes ..64

Mapping and Converting HL7 v2 to CSV Format..65
Mapping and Converting CSV File to HL7 v3 Format ...65

Using the HL7 v2 to HL7 v3 Module..66
Advanced HL7 v2 to HL7 v3 Mapping ...67

Chapter 6 Regulatory Data Services Module ..70
Understanding the Mapping and Transformation Processes ..70
Mapping a CSV File to SDTM Domain Structures ..71
Generating SDTM Datasets from a CSV file ...75
Editing an Existing Map File ..76
Editing and Printing an Existing Map File ..77
Mapping a Relational Database to SDTM Domain Structures ..78
Generating SDTM Datasets from a Database...82

Chapter 7 caAdapter Model Mapping Service..86
Overview..86
Using the caAdapter Model Mapping Service ...86

Exporting an XMI file from EA ...87
Creating an Object Model to Data Model Map Specification...88
Basic Mapping ...90
Dependency Mapping (Object to Table)..90
Association Mapping ...92
Validating Mapping Specifications...92
Saving Mapping Specifications ...93
Generating Hibernate Mappings ...93

The Seven Mapping Scenarios ...94
One‐to‐One Bi‐Directional..94

 v

One‐to‐One Uni‐Directional..95
One‐to‐Many Bi‐Directional..95
One‐to‐Many Uni‐Directional..96
Many‐to‐One Uni‐Directional..97
Many‐to‐Many Bi‐Directional..97
Many‐to‐Many Uni‐Directional..98
Mapping Inheritance ..98

User Interface Legend ...99
Node Details ..99
Mapping Line Colors..99
Additional Module Features...99

Chapter 8 Using Functions in Mapping ..102
Functions Provided by caAdapter..102
Function Specifications..104

Function Specification Overview ...104
Vocabulary Mapping Specification Overview ..111

Adding Functions to the Function Library ..114

Chapter 9 Using the caAdapter APIs ...116
caAdapter Directory Structure ...116
caAdapter APIs..117

Meta Data Loader..117
Transformation Service ...118
HL7 v2 to HL7 V3 Transformation...118
Vocabulary and MIF Schema Validation ...119

caAdapter API Error Logs..120

Chapter 10 caAdapter Web Services Transformation Module ..123
Introduction ..123
Setup Mapping Scenarios Through the Web Portal ..124
Programmatic Access to the caAdapter Web Services...125

Axis 1.x RPC Style Access to caAdapter Web Services...125
Axis 1.x DII Style Access to caAdapter Web Services..126
Axis 2.0 RPC Style Access to caAdapter Web Services...128

Chapter 11 caAdapter File Types ..131
caAdapter File Formats and Locations..131
CSV Data File ..132
CSV Specification ..132
HL7 v3 Specifications ..134
HL7 v2 Specifications ..139

Message Structure ..140
DataTypeSpec...140
Segment Attribute Table..141

caAdapter 4.0 User’s Guide

vi

Definition Table..141
SDTM Data Files ...142
SDTM Meta Data Files ..143
Function Specification..144

Function Specification Overview ...144
Adding Functions to the Function Library..146

HL7 v3 Message..146
CSV to HL7 v3 Map Specification ...147
Object to Database Map Specification ..149

Appendix A caAdapter Example Data...153

Appendix B References ...155
Articles ...155
caBIG Material ...155
caCORE Material...155
HL7 Concepts and Material ...155
Software Products ...155
Study Data Tabulation Model (SDTM) Concepts and Material ...156

Glossary...157

Index ..159

 1

Chapter 1 Using This Guide

This chapter introduces you to the caAdapter User’s Guide.

Topics in this chapter include:

• Intended Audience on this page
• Recommended Reading on page 1
• Document Text Conventions on page 1
• Organization of this Guide on page 2
• Library and Resources Files on page 2

Intended Audience
The caAdapter User's Guide is the companion documentation to caAdapter. This guide
includes information and instructions for using caAdapter which consists of two components:
a set of Application Programming Interfaces (APIs) and a mapping tool graphical user
interface (GUI). See Chapter 1 for an overview of caAdapter. The technical audience (Java
programmers, system architects, etc.) use this guide to utilize the major caAdapter
Application Programming Interfaces (APIs) to parse, build and validate Health Level Seven
(HL7) version 3 (v3) messages. Analysts (HL7 analysts, database administrators, business
analysts, etc.) use this guide to follow the step-by-step procedures to create v3 xml
message instances using the GUI, map and generate Study Data Tabulation Model (SDTM)
text files, and map object and data models.

This guide assumes that the reader is familiar with HL7, SDTM, object and data model terms
and processes and only provides a brief overview of these concepts. Prerequisites for using
the caAdapter Mapping Tool are also included.

Recommended Reading
Following is a list of recommended reading materials and resources which can be useful for
familiarizing oneself with concepts contained within this guide.

• HL7: http://www.hl7.org

• National Cancer Institute Center for Biomedical Informatics and Information Technology
(NCI CBIIT) HL7 Tutorial:
http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial

• SDTM: http://www.cdisc.org/models/sds/v3.1/

• UML: http://www.uml.org/

Uniform Resource Locators (URLs) are also used throughout the document to provide more
detail on a subject or product.

Document Text Conventions
The following table shows various typefaces to differentiate between regular text and menu

caAdapter 4.0 User’s Guide

2

commands, keyboard keys, tool bar buttons, dialog box options, and text that you type. This
illustrates how text conventions are represented in this manual:

Convention Description

Notes Notes: Notes are enclosed for emphasis

Bold Bold type is used for emphasis, buttons, or tabs to select on windows,
and names of dialog boxes.

TEXT IN SMALL CAPS TEXT IN SMALL CAPS is used for keyboard keys that you press (for
example, ALT+F4)

Text in italics Italics are used to reference other documents, sections, figures, and
tables.

Special typestyle Special typestyle is used for filenames, directory names, commands, file
listings, and anything that would appear in a Java program, such as
methods, variables, and classes.

Bold italics
typestyle

Bold italics is used for information the user needs to enter

{ } Curly brackets are used for replaceable items (for example, replace
{home directory} with its proper value such as C:\caadapter).

Organization of this Guide
The caAdapter User’s Guide contains the following chapters:

• Chapter 1 Using This Guide - This chapter provides an introduction to this user’s guide.

• Chapter 2 Overview of caAdapter - This chapter provides an overview of caAdapter,
caAdapter’s architecture, HL7, SDTM and object and data models.

• Chapter 3 Using caAdapter - This chapter provides operational scenarios for caAdapter
using real-life examples.

• Chapter 4 CSV to HL7 v3 Mapping and Transformation - This chapter provides detailed
instructions for using the caAdapter Graphical User Interface (GUI) for CSV to HL7 v3
mapping and transformation.

• Chapter 5 HL7 v2 to HL7 v3 Conversion - This chapter provides detailed instructions for
using the caAdapter GUI for HL7 v2 to HL7 v3 conversion.

• Chapter 6 Regulatory Data Services Module – CSV to SDTM Mapping and
Transformation - This chapter provides detailed instructions for using the caAdapter GUI
for CSV to SDTM mapping and transformation, and database to SDTM mapping and
transformation.

• Chapter 7 Model Mapping - This chapter provides detailed instructions for using the
caAdapter GUI for object model to data model mapping.

 Chapter 1 Using This Guide

 3

• Chapter 8 Using Functions in Mapping - This chapter provides detailed instructions for
using and adding functions in caAdapter mappings.

• Chapter 9 Using the caAdapter APIs - This chapter provides Java developers
information required to use caAdapter APIs.

• Chapter 10 Using the caAdapter Web Service - This chapter provides detailed
instructions for using the caAdapter Web Service.

• Chapter 11 caAdapter File Types - This chapter provides an overview of the different
types of files used by caAdapter and an example of each.

• Appendix A caAdapter Example Data - This appendix provides a description of the
example data delivered with caAdapter.

• Appendix B References - This appendix provides a list of references used to produce
this guide or referred to within the text.

Library and Resources Files
caAdapter uses several library files. A few of those files are licensed by a third party,
therefore, NCI CBIIT cannot include those with the caAdapter distribution files. We
recommend for the user to obtain those files from their respective providers. Once obtained,
the user must place those files under the “\caAdapter v4.0\lib” directory. The table below
shows a list of those files with information on how to obtain each.

Resource File
Name

Source Source URL Comments

jgraph.jar JGraph www.jgraph.com

resource.zip HL7 Organization www.hl7.org caAdapter can
generate this file from
the HL7 V3 Normative
Edition 2006 CD
available from the HL7
Organization. Please
reference the
paragraph below for
step-by-step
instructions.

resourceV2.zip –
This file was
manually
constructed

HL7 Organization www.hl7.org For details on obtaining
this file, please contact
the caAdapter support
team at:

NCICB Application
Support

http://ncicb.nci.nih.gov/

caAdapter 4.0 User’s Guide

4

NCICB/support

Telephone: 301-451-
4384

Toll free: 888-478-4423

sqleonardo.jar SQLeonardo sqleonardo.altervista.
org

Generating the resources.zip File
1. Select Tools > Load HL7 v3 Normative Edition Processable Artifacts.
2. The following screen will be displayed, select [Yes]. Note that the system will display this

screen only if you already ran this process before at least once.

3. Locate the HL7 Normative Edition home directory and click OK.

caAdapter will begin processing the information to create the resource.zip file, and displays
a confirmation message upon completion.

 Chapter 1 Using This Guide

 5

 6

Chapter 2 Overview of caAdapter

This chapter provides an overview of caAdapter, its architecture, and its related data standards.

Topics in this chapter include:

• caAdapter Overview on this page
• caAdapter Core Engine Architecture on page 7
• caAdapter Mapping Tool Architecture on page 8
• HL7 Overview on page 8
• SDTM Overview on page 10
• Object and Data Model Overview on page 11
• Prerequisites for Using the caAdapter Mapping Tool on page 11
• caAdapter Installation on page 12
• Starting the caAdapter Mapping Tool on page 12

caAdapter Overview
The caAdapter(http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caadapter)
consists of several components that, via messaging standards, support data sharing at NCI
CBIIT (http://ncicb.nci.nih.gov) and/or cancer centers as part of the cancer Biomedical
Informatics Grid (caBIG) (http://caBIG.nci.nih.gov) solution. The components include a core
engine for building, parsing, and validating HL7 v3 messages via an API or web service, and
a mapping tool for providing mapping and transformation services using an assortment of
messaging standards or formats such as HL7 v2 and v3, SDTM, and object and data
models.

The caAdapter core engine is an open source toolkit for building, parsing and validating HL7
v3 messages from source clinical systems to promote data exchange in an international,
standards-based messaging format. The core engine is a messaging framework that is
based on an object-oriented data model, the HL7 RIM, and a set of v3 defined data types.
This framework enables clinical applications to build and parse HL7 v3 messages based on
specific schema definitions and perform structural, vocabulary and schema validation.
caAdapter integrates with NCI CBIIT cancer Common Ontologic Representation
Environment (caCORE) components (http://ncicb.nci.nih.gov/NCICB/infrastructure). See the
caCORE Technical Guide (ftp://ftp1.nci.nih.gov/pub/cacore) and the caCORE Software
Development Kit Programmer’s Guide (ftp://ftp1.nci.nih.gov/pub/cacore/SDK) for more
information. This supports NCI CBIIT’s mission of developing a translational research
infrastructure and building a clinical research network by providing a common platform for
sharing data.

The caAdapter Mapping Tool is an open source application that supports several types of
mapping and transformation. It enables analysts and database engineers, who are
knowledgeable about HL7, to create a mapping from Comma Separated Value (CSV)
clinical data to an equivalent target HL7 v3 xml format. It provides a front end GUI and a
back end engine to support specification of file formats, drag-and-drop mapping between
source and target, validation of specifications and data, and transformation of actual CSV
data into HL7 v3 xml message instances.

 Chapter 2 Overview of caAdapter

 7

Using similar GUI and mapping features, the caAdapter Mapping Tool also enables HL7 v2
analysts to convert v2 messages into CSV format for use with the CSV to HL7v3 mapping
capabilities. In addition, the caAdapter Mapping Tool permits SDTM analysts to map CSV
study data to the SDTM format. Core engine support for these processes will be added in a
later release.

Perhaps most useful to end users is the capability of the caAdapter Mapping Tool to support
object to data model mapping. This component allows users to parse and load data and
object models from an xmi file, map the object model to the data model using drag-and-drop
capabilities, add SDK-required tags and tag values into the xmi file, and generate a
Hibernate mapping file.

caAdapter Core Engine Architecture
Figure 2-1 illustrates the caAdapter core engine architecture design including its subsystems
and components.

Figure 2-1 caAdapter Core Engine Architecture

The main features of the caAdapter core engine are:

• Meta Data Loader - represents HL7 v3 metadata in-memory.

• Message Parser – parses HL7 v3 messages to Reference Information Model (RIM)
object graph.

• Message Builder – builds HL7 v3 messages from the RIM object graph.

• Validation Services

• Message Service Integration (future plans) – integrates with message exchange
services.

caAdapter 4.0 User’s Guide

8

caAdapter Mapping Tool Architecture
The caAdapter Mapping Tool is a graphical application for mapping clinical data to an HL7
v3 message. Figure 2-2 illustrates the caAdapter Mapping Tool architecture design depicting
its subsystems and components.

Figure 2-2 caAdapter Mapping Tool Architecture

 The mapping tool provides the following:

• Source and Target Specification - graphical interface for defining input and output data
formats.

• User Interface - simple mechanism for mapping source fields to target elements
containing tree structure, drag-and-drop functionality, and functions and property
definitions.

• Mapping Functions - capability to do simple source data manipulation.

• Transformation Service - generation of HL7 v3 xml message instances and SDTM text
files from a source database based on user-defined mapping specifications.

• Validation - capability to validate the structure and content of HL7 v3 messages.

HL7 Overview
Health Level Seven (HL7) (http://www.hl7.org/) is one of several American National
Standards Institute (ANSI)-accredited Standards Developing Organizations (SDOs)
operating in the healthcare arena. HL7 provides standards for data exchange to allow
interoperability between healthcare information systems. It focuses on the clinical and
administrative data domains. The standards for these domains are built by consensus by

 Chapter 2 Overview of caAdapter

 9

volunteers – providers, payers, vendors, government – who are members in the not-for-profit
HL7 organization.

HL7 version 2 (v2) is a messaging standard that focuses on syntactic data interchange. HL7
messaging (v2 or higher) has been recommended as a data exchange standard by the e-
Government initiative. In fact, various releases of this version are in use in over 90% of U.S.
hospitals, and v2 is considered the most widely implemented standard for healthcare
information in the world. However, since it lacks an explicit methodology, conformance rules,
and grouping of messages, it cannot be considered an interoperability standard.

HL7 v2 messages are composed of segments (individual lines in a message) which are
composed of fields (data values) which may in turn be composed of components and sub-
components. Several different delimiters or field separators are used to mark boundaries
between the various elements. Specifications for messages using these structures are
published in a text document format which does not easily lend itself to being computable.
Furthermore, messages are often customized at local sites making it difficult to share
messages between sites. caAdapter consequently includes a computable version of the
message specifications which can be tailored to suit the needs of cancer centers and
hospitals.

HL7 as an organization aimed to address some of the problems of v2 in its next major
version, version 3 (v3). The key goal of the HL7 community is syntactic and semantic
interoperability. This goal is supported in HL7 v3 by what are commonly called the four
pillars of semantic interoperability:

1. A common Reference Information Model (RIM) spanning the entire clinical,
administrative, and financial healthcare universe. The RIM is the cornerstone of the HL7
v3 development process. An object model created as part of the v3 methodology, the
RIM is a large pictorial representation of the clinical data domains and identifies the life
cycle of events that a message or groups of related messages will carry. It is a shared
model between all the domains and is the model from which all domains create their
messages. Explicitly representing the connections that exist between the information
carried in the fields of HL7 messages, the RIM is essential to HL7’s ongoing mission of
increasing precision and reducing implementation costs.

2. A well-defined and tool-supported process for deriving data exchange specifications
from the RIM. HL7 has defined a methodology and process for developing
specifications, artifacts to document the models and specifications, tools to generate the
artifacts and an organization for governing the overall process of standards
development. Such structure avoids ambiguity common to many existing standards.

3. A formal and robust data type specification upon which to ground the RIM. Data types
are the basic building blocks of attributes. They define the structural format of the data
carried in the attribute and influence the set of allowable values an attribute may
assume. HL7 defines an extensive set of complex data types which provide the structure
and semantics needed to describe data in the healthcare arena.

4. A formal methodology for binding concept-based terminologies to RIM attributes. Within
HL7, a vocabulary domain is the set of all concepts that can be taken as valid values in
an instance of a coded field or attribute. HL7 has defined vocabulary domains for some
attributes to support use of the RIM in messages. It also provides the ability to use,
document, and translate externally coded vocabularies in HL7 messages.

The specifications that are developed upon this foundation are documented in a progressive

caAdapter 4.0 User’s Guide

10

set of artifacts that represent varying levels of abstraction of the domain data. The artifacts
go from purely abstract and universal in scope to implementation-specific and very narrow in
subject matter:

• The RIM is the foundational Unified Modeling Language (UML) class diagram
representing the universe of all healthcare data that may be exchanged between
systems.

• A Domain Message Information Model (DMIM) is a subset of the RIM that includes RIM
class clones, attributes, and associations that can be used to create messages for a
particular domain (a particular area of interest in healthcare). DMIMs use HL7 modeling
notation, terminology, and conventions.

• A Refined Message Information Model (RMIM) is a subset of a DMIM that is used to
express the information content for an individual message or set of messages with
annotations and refinements that are message specific.

• A Model Interchange Format (MIF) is an xml representation of the information contained
in an HL7 specification, and is the format that all HL7 v3 specification authoring and
manipulation tools will be expected to use.

• A Message Type (MT) is the specification of an individual message in a specific
implementation technology.

The caAdapter APIs make use of the MIF and MT artifacts. While the HL7 standard is not
implementation specific, caAdapter uses xml as its implementation technology.

The NCI CBIIT provides training resources to assist the caBIG community and other
interested parties in implementing HL7 v3 messaging. These resources include online
tutorials, self-paced training, and links to HL7 resources
(http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial).

SDTM Overview
The Study Data Tabulation Model, or SDTM, is a set of standards developed by the Clinical
Data Interchange Standards Consortium (CDISC). It provides structured guidelines for
submitting study data tabulations to a regulatory authority such as the United States Food
and Drug Administration (FDA).

SDTM datasets are organized by “Domains” where each Domain contains a list of
“Variables”. Each domain is identified by a two-letter acronym. An eight-character naming
convention is used to refer to variables within a domain. An example domain is
“Demographics” which is referred to by the acronym “DM”. The Demographics dataset
contains variables such as patient name, patient date of birth, race, sex, and others.

Domains are grouped into “Classes”. Domain classes include:

• Trial Design

• Interventions

• Events

• Findings, and,

• Special Purpose

 Chapter 2 Overview of caAdapter

 11

Figure 2-3 lists SDTM Domain Classes and associated Domains.

Figure 2-3 SDTM Domain Classes

SDTM dataset structures are fully defined in the guide “Study Data Tabulation Model
Implementation Guide: Human Trials”, which is available from the CDISD website at
(www.cdisc.org). Furthermore, SDTM datasets are defined in an xml document often
referred to as the “define.xml”. This document allows submitters to define the structure of the
dataset being submitted, especially the list of valid values used to validate certain variables.
CDISC provides a sample “define.xml” document which was used in the implementation of
the CSV to SDTM Mapping capability of caAdapter version 4.0.

Object and Data Model Overview
The caAdapter v4.0 Model Mapping Service takes advantage of the caAdapter mapping
infrastructure to facilitate object to database mapping. The model mapping service requires
an .xmi file (with full Enterprise Architect (EA) roundtrip capability) that includes a data
model and an object model as input. It loads all models into the tool and then users can map
an object element to a data model element using drag-and-drop capability. Once the
mapping is done, caAdapter 4.0 adds all SDK-required tagged values into the xmi file and
saves them to the .map file for backwards compatibility. After reimporting the newly tagged
xmi file into EA and exporting an xmi 1.1 compatible xmi file, caCORE SDK can perform all
code generation tasks.

Prerequisites for Using the caAdapter Mapping Tool
You must have the following prerequisites to successfully use the mapping tool:

• Thorough familiarity with source data.

• HL7 artifacts, messages, and data types for v2 and v3.

• SDTM domains, variables, and “define.xml” document.

• Object and data model.

caAdapter 4.0 User’s Guide

12

• Training on the caAdapter Mapping Tool.

• Familiarity with caAdapter Mapping Rules documentation.

caAdapter Installation
Complete instructions for installing caAdapter are located in the caAdapter Installation Guide
at http://ncicb.nci.nih.gov/download/downloadhl7.jsp.

Starting the caAdapter Mapping Tool

Starting the Mapping Tool from the Binary Distribution

Perform the following steps to launch the caAdapter Mapping Tool GUI.

1. In a Command Prompt window, enter cd {home directory} to go to your home directory
(for example, in Windows C:\caadapter).

2. Enter java -jar caadapter_ui.jar. The “Welcome to the caAdapter” screen momentarily
appears and the caAdapter Mapping Tool GUI displays.

Starting the Mapping Tool from the Source Distribution

Perform the following steps to launch the caAdapter Mapping Tool GUI.

1. In a Command Prompt window, enter cd {home directory} to go to your caAdapter
home directory (for example, in Windows C:\caadapter).

2. Enter cd ..\hl7sdk and then enter ant all.
3. Enter ant launchui.
4. The “Welcome to the caAdapter” screen momentarily appears and the caAdapter

Mapping Tool GUI displays.

Starting the Mapping Tool from the Windows Distribution

To launch the caAdapter Mapping Tool GUI, select caAdapter from the Start menu
shortcut.

Starting the Mapping Tool on the Web (WebStart)

You can also use caAdapter via the web by entering the following:
http://cbioga101.nci.nih.gov:49080/caadapter-mms/caadapter-mms.jnlp

Note: This version of caAdapter on the web only supports the Model Mapping Services
Module. Other modules will be added in future releases.

 Chapter 2 Overview of caAdapter

 13

 14

Chapter 3 Using caAdapter

This chapter provides a high level overview for using caAdapter.

Topics in this chapter include:

• API Process Flow for CSV to HL7 v3 Transformation on this page
• API Operational Scenario for CSV to HL7 v3 on page 15
• Mapping Tool Operational Scenario for CSV to HL7 v3 on page 16
• Mapping Tool Operational Scenario for HL7 v2 to HL7 v3 Transformation on page 16
• Mapping Tool Operational Scenario for Regulatory Data Services Module on page 17
• Mapping Tool Operational Scenario for Model Mapping Service on page 17

API Process Flow for CSV to HL7 v3 Transformation
This section describes the process for creating a validated HL7 v3 adverse event (AE)
message, also known in HL7 as an ICSR, based on a given CSV file or set of files and a
corresponding mapping specification. caAdapter uses the Transformation and Validation
engine to perform different validation levels based on a user’s selection: structural only,
structural and vocabulary; or structural, vocabulary and schema.

The basic steps to accomplish this workflow using caAdapter are:

• caAdapter receives a CSV file, its meta file, an HL7 v3 message specification, and the
mapping file that the user used to map the CSV schema to the HL7 v3 message.

• The transformation process uses the files above to create a preliminary HL7 v3
message, an internal instance, which will be put through the validation process.

• The validation process uses the internal instance of the message to perform the
following validation sub-processes, (1) validation against the MIF specifications. (2)
validation against HL7 v3 published vocabulary, and, (3) validation against the schema
of that HL7 v3 message type.

• caAdapter then creates the final HL7 v3 message that corresponds to the source CSV
file.

Figure 3.1 illustrates the transformation and validation processes.

 Chapter 3 Using caAdapter

 15

Figure 3-1 Transformation and Validation Processes

API Operational Scenario for CSV to HL7 v3
A clinical trials coordinating center is automating the receipt and routing of AE reporting from
the member hospitals and clinical centers. They have researched the options and chosen to
implement HL7 v3 messaging. Their hospitals are implementing the messages and the
coordinating center is preparing to handle the incoming messages. They have identified the
caAdapter APIs as one part of their messaging infrastructure.

When their messaging service receives an HL7 v3 message from a hospital or clinical
center, it calls a caAdapter API to parse the incoming message. The parser validates the
message against the appropriate xml schema description based on the message ID. It then
builds an object graph in memory based on the schema definition and loads the data into the
object graph. Another caAdapter API is called to validate the vocabulary used for the HL7 v3
structural attributes using the NCI's EVS. This overall process builds a caAdapter log file
that the system administrator can monitor.

With the validated message content held in the object graph, the system can now perform
the following:

• Generate the HL7 v3 message for rerouting to the FDA using another caAdapter API for
building messages.

• Pass the caAdapter object graph in an API call to a separate persistence application
where the data is stored for research/data mining and administrative purposes.

• Notify the sending system that the message was received and processed using
identifying data from the object graph.

caAdapter 4.0 User’s Guide

16

Mapping Tool Operational Scenario for CSV to HL7 v3
A research hospital has been faxing AE reports to a clinical trials coordinating center for
submission to the Food and Drug Administration (FDA). Instead of using a manual effort to
fill out the MedWatch 3500A form, they would like to automate and streamline the process.
They have a clinical data management system (CDMS) where the necessary AE data is
stored. They would like to automate the process by pulling data from this system and
transforming it into an HL7 v3 message to route to the FDA. Their clinical systems analyst
researched the HL7 standards and identified the correct specification to use, called the
ICSR. The analyst uses the caAdapter Mapping Tool to implement this plan.

The clinical systems analyst uses the caAdapter Mapping Tool to define a file specification
that describes the source file for the transformation. This source specification outlines the
format of a CSV file where each line is a segment containing a logical grouping of fields.
Each segment may have one or more dependent child segments to handle one-to-many
relationships between logical groups of data. The analyst also uses the caAdapter Mapping
Tool and the HL7 ICSR's MIF file to generate a target file specification. This specification is
based on the number and types of elements in the HL7 message that are needed to support
their AE data. After source and target specifications are defined, the analyst then maps
source fields to target fields using caAdapter's map specification tab. The application allows
the analyst to drag-and-drop CSV source fields onto HL7 target fields and use functions to
manipulate the data on the way. The result of this step is that a mapping specification is
generated by the caAdapter Mapping Tool. After the mapping is complete, the analyst then
uses the caAdapter Mapping Tool to test the generation of HL7 v3 ICSR xml message
instances using a sample CSV file obtained from the CDMS.

When this development process is complete, the caAdapter specification files and
transformation APIs can be implemented as part of a message routing infrastructure to
deliver AE data to the FDA in a streamlined fashion.

Mapping Tool Operational Scenario for HL7 v2 to HL7 v3
Transformation

A number of research institutes have been submitting daily electronic AE data to a clinical
trials coordinating center which in turn consolidates and submits to the FDA. The data is
being submitted in HL7 v2.5 format. The coordination center anticipates a new FDA
requirement which mandates that all AE submissions be in HL7 v3 format. The coordination
center decides that the best way to meet this requirement is to add an HL7 v2.5 to v3 data
conversion step to its current FDA submission process.

Instead of manually implementing the conversion process, the coordinating center decided
to use the caAdapter Mapping and Transformation tools to expedite the implementation.

The clinical systems analyst researched the HL7 v3 standards and identified the best
message type to use for submitting AE data. The next step is to map the data elements from
the HL7 v3 v2.5 message currently being used, to the identified target HL7 v3 message.

The first task of the conversion and transformation process is to use caAdapter to create a
CSV file and CSV file specifications that match the HL7 v2.5 source message. The second
step is to use the CSV to HL7 v3 mapping and transformation capability to map the CSV
data elements to the target HL7 v3 message. For more information, see the previous
sections in this chapter. Once the map file has been created, caAdapter will use that to

 Chapter 3 Using caAdapter

 17

transform the data and create the HL7 v3 file.

Mapping Tool Operational Scenario for Regulatory Data
Services Module

A research institute is planning the execution of a clinical trial and is in the process of
reviewing reporting procedures to various regulatory entities. The results of the analysis
showed that the Institute’s current CTMS can satisfy all electronic reporting requirements
except for the reporting and submission to the FDA. The FDA has recently introduced the
SDTM set of standards which all research centers must adhere to when submitting clinical
trials data. The research institute can use caAdapter’s Regulatory Data Service (RDS)
module to map its data, residing in CSV or relational database formats, to create the
necessary SDTM datasets to help implement this new FDA requirement.

In the case where the data resides in CSV formats, the clinical systems analyst can use
caAdapter’s Mapping Tool to map the data elements from a CSV file to the corresponding
SDTM domain data elements using drag-and-drop capability. Once the mapping is complete
and a map file is created, the analyst can use the transformation service to transform the
data from CSV format into SDTM dataset format.

In the case where the data resides in a relational database, the clinical systems analyst can
use caAdapter’s Mapping Tool to map a data element directly from the database to the
proper SDTM domain(s). The caAdapter Data Viewer will help the user create the
necessary SQL queries necessary to extract the data from the databases to create the
SDTM datasets. Using the Data Viewer capability is optional; caAdapter automatically
creates the SQL statements needed once the user completes the mapping.

Mapping Tool Operational Scenario for Model Mapping
Service

In order to generate silver-level compliant software, caCORE SDK developers must first
develop an object model and a data model in EA. Second, the developers must manually
add tag values to associate objects to tables, associate attributes to columns, and define
various associations between objects. This approach is error prone and very time
consuming. The caAdapter model mapping service component can greatly automate this
process by automatically loading the object model and the database. The user can map
objects/attributes to tables/columns using drag-and-drop capability. Next, caAdapter will
automatically add tag values to the original xmi file and create an updated one. The user
then can use the updated xmi file for caCORE SDK code generation.

Users who are not using the caCORE SDK but want to map an object model to a database
must develop a set of hibernate mapping files manually. The caAdapter model mapping
service automates the Hibernate mapping file creation process in a similar fashion as
described in the previous scenario. After developing the object model using EA, the user can
import the corresponding data model. The user can then drag-and-drop objects/attributes to
tables/columns and click the “generate hibernate hbm file” button to create the necessary
set of hibernate mapping files.

 18

Chapter 4 CSV To HL7 v3 Mapping and Transformation

This chapter defines the step-by-step procedures to use the caAdapter Mapping Tool to perform
CSV to HL7 v3 mapping and transformation.

Topics in this chapter include:

• caAdapter Mapping Tool Process Flow on this page
• caAdapter Mapping Tool Common Features on page 19
• Source Specification on page 23
• Target Specification on page 28
• Map Specification on page 44
• HL7 v3 Message on page 56
• Transforming an HL7 Message into a CSV Format on page 60

caAdapter Mapping Tool Process Flow
The basic steps to use the caAdapter mapping tool (Figure 4-1) are as follows:

1. Generate a CSV specification file from CSV data.
2. Generate an HL7 specification file from an HL7 MIF file.
3. Load the source specification (CSV specification) on the left side and load the target

specification (HL7 specification) on the right side in the mapping tool GUI. Define
mappings by drawing lines between elements of the source and target sides and save
the mapping to an xml file.

4. Select the CSV data and the mapping file; the mapping engine will transform the data
into an object instance based on the mapping file. caAdapter uses the object instance
and builds the HL7 v3 message instance.

Figure 4-1 How the mapping tool works

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 19

caAdapter Mapping Tool Common Features

caAdapter Mapping Tool Interface

The caAdapter Mapping Tool interface (Figure 4-2) is Windows-based and includes a main
menu bar, a tool bar, and tabs located in the top of the window. The different panels can be
resized by selecting the edge of the panel and dragging. Scroll bars are used when needed
to display all the information.

Figure 4-2 Mapping Tool interface

The menu bar is context sensitive. Only the options that are available for your current
window are displayed in black font; the other options are unavailable. For example, the
Report option is unavailable in Figure 4-2 since it is not available for the .h3s file.

The menu bar consists of the File, Report, and Help options. The File option allows you to
perform the functions in Table 4-1.

caAdapter 4.0 User’s Guide

20

File Options Description

New Creates a new file for the type of file you select including:
CSV to HL7 v3 Mapping and Transformation Service
CSV Specification
HL7 v3 Specification
CSV to HL7 v3 Map Specification
HL7 v3 Message
HL7 V3 to CSV Transformation Service
HL7 V3 To CSV

HL7 v2 to HL7 v3 Mapping and Transformation Service
HL7 V2 to SCS & CSV Conversion
HL7 v3 Specification
CSV to HL7 v3 Map Specification
HL7 v3 Message
RDS Mapping and Transformation Service
CSV Specification
CSV/Database to RDS Map Specification
RDS Text File
Model Mapping Service
Object to Database Map Specification

Open Opens an existing file for the type of file you select including:
CSV Specification
HL7 v3 Specification
CSV to HL7 v3 Map Specification
CSV to SDTM Map Specification
Object to Database Map Specification

Save (CTRL+S) Saves the file you are currently working on (in the selected tab).

Save as Opens a ‘Save as’ dialog box to allow you to save the file to another file
name.

Validate Validates the file you are currently working on (in the selected tab).

Close (CTRL+F4) Closes the file you are currently working on (in the selected tab). The
following Data Changed dialog box appears if you have not saved your work,
“Data has been changed but is not saved. Would you like to save your
changes?” Select Yes, No or Cancel.

Close all Closes all the files.

Exit (ALT+F4) Exits the caAdapter Mapping Tool.

Table 4-1 File menu options

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 21

The Report option currently allows you to generate reports for CSV and map specifications
and for CSV to SDTM map specifications. The Help option contains information about
caAdapter and online help Contents and Index options.

The tool bar is context sensitive. Only the options that are available for your current window
are displayed. Table 4-2 contains a list of available icons. There are shortcuts for the same
functionality that can be accessed from the menu bar.

Tool Bar Options Description

Opens a new file of the type of file that is currently open.

Saves the file that is currently open.

Closes the tab that is currently open.

Validates the file that is currently open.

Refreshes the mapping panel. It is only visible if it is on the mapping
panel.

Opens the Help window.

Table 4-2 Tool bar options

The caAdapter Mapping Tool uses a document-oriented paradigm where up to four files of
different types can be open at the same time, each within its own tab in a single window.
The four different types of tabs are:

1. CSV specification
2. Map Specification (CSV to HL7 v2, CSV to SDTM, and Object to Database)
3. HL7 v3 Specification (.h3s, xml)
4. HL7 v3 Message / CSV data file

In some cases, only one of each file type may be open at a time. If you open a new file of a
file type that is restricted and already open, then the existing file will be replaced with the
new file. The tab name displayed is the name of the file in the tab (for example,
040011.h3s as shown in Figure 4-2) or it is labeled untitled.<ext>, where <ext> is

caAdapter 4.0 User’s Guide

22

the appropriate file extension for that type of tab. The window layout changes depending on
the type of tab displayed. For example, the HL7 v3 specification tab displays a tree structure
in the left-hand panel and the properties and validation messages in the right-hand panel.

caAdapter Mapping Tool Validation

The caAdapter Mapping Tool contains validation on some of its tabs (further types of
validation will be provided in later releases). Validation is used to:

1. Validate the given specification to ensure it is technically correct before continuing onto
the next step.

2. Provide a user-friendly method to report errors so you can correct them.
3. Provide reminder notes on the process (information messages).

The results of the validation are displayed in the Validation Messages panel (Figure 4-3).
Only one level of message is displayed at a time. From this panel you can:

• Change the Message Level by selecting a different level from the drop-down list.

• Click Save to save the messages to a file.

• Click Print to send the messages to your printer.

• Select a message to display the full content of the selected message in a panel below
the Validation Messages panel (see Figure 4-3).

Figure 4-3 Validation Messages panel

Table 4-3 contains the different levels of messages produced during validation.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 23

Message Level Description Example

 FATAL The process leads the application into an
unrecoverable situation where the
application itself has to halt the process
instead of moving forward.

A file with a wrong file type is given
to the map specification module and
it does not know how to open the
file.

ERROR The process leads the application into a
recoverable situation with serious issues
that require your attention. It is better if
these errors are resolved before
proceeding or you could receive partial or
incorrect results.

The CSV data does not match a
given specification.

WARNING The process leads the application into a
recoverable situation with medium level
issues that won’t prevent the application
from proceeding further. However, it may
require your attention to resolve them so
the process will generate the expected
results.

Not all segments and fields within
the CSV specification have been
mapped to the HL7 v3 specification.

INFO Contains information, such as tips,
suggestions, reminders, etc. You can
simply ignore them if you want to.

Contains the choice selected for an
element

Table 4-3 Validation messages

Source Specification

Segmented CSV Specification

Business Rules

Following are the business rules for a segmented CSV specification:

• Two or more segments cannot have the same name.

• Two or more fields cannot have the same name in same segment (case-insensitive).

• Segment names must be a combination of any letters (A-Z) in CAPITALS, numbers or
the underscore character.

• Field names must be a combination of any letters (A-Z or a-z), numbers, or the
underscore character.

Step‐by‐Step Instructions

This section contains the detailed instructions to use the Mapping Tool to create or update a

caAdapter 4.0 User’s Guide

24

CSV specification.

Overview of CSV Specification Tab

The CSV Specification tab (Figure 4-4) allows you to identify the hierarchy of segments and
fields that describe an incoming CSV data file that must be converted into one or more HL7
v3 xml messages. The CSV specification tab separates the tree structure in the left-hand
panel from the validation results and properties in the right-hand panel. The tree structure
displays the hierarchy of segments and fields that represent the way data in the source CSV
files are organized. Typical features of the tree structure are used, such as dragging and
dropping an element to another location in the tree, or the ability to expand and collapse a
branch of the tree using the + and - symbols respectively. The Properties section in the
right-hand panel allows you to work with the metadata on the left.

Figure 4-4 CSV Specification tab

The following sections describe how to access, update, validate, and save the CSV
specification.

Creating and Opening a CSV Specification

First, you must create a new or open an existing CSV specification. Select File > New >
CSV to HL7 v3 Mapping and Transformation Service > CSV Specification to display the
New CSV Specification dialog box. Select one of the following as the source to create a
new CSV specification.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 25

a. Blank CSV Schema - Click OK to open the CSV Specification file, named
Untitled_1.scs, in a new tab with an empty tree except for an initial root
segment which is named ROOT by default.

b. Generate from a CSV Instance - Click Browse to display the Open CSV File
dialog box. Select the appropriate .CSV file and click Open. The file is displayed in
the New CSV Specification dialog box. Click OK to open the CSV data file in a
new tab, named Untitled_1.scs, with the information from the data file
displayed.

c. New from an Existing CSV Specification File - Click Browse to display the Open
CSV Specification dialog box. Select the appropriate .scs file and click Open.
The file is displayed in the New CSV Specification dialog box. Click OK to open
the CSV Specification file in a new tab, named Untitled_1.scs, with the
information from the selected file displayed.

Alternatively, open a CSV Specification file that was previously saved by selecting File >
Open > CSV Specification to display the Open CSV Specification dialog box. Select the
appropriate .scs file and click Open. A new tab opens with the CSV Specification file
displayed in the tree.

Updating the CSV Specification

1. Once you have a CSV Specification file open, you can perform the following basic
functions to update the tree hierarchy. Update any default field names to have
meaningful names.
a. Click on a segment in the tree structure to display the details of that element in the

Segment Properties section (Figure 4-5).

Figure 4-5 Segment properties

b. Click the Move Up and Move Down buttons to re-arrange the sequence of the fields
displayed under the given segment. By default the Move Up and Move Down
buttons are both disabled unless you select any element in the field list (they are
enabled in Figure 4-5 because id_extention is selected). Select a number/name row

caAdapter 4.0 User’s Guide

26

and click the Move Up or Move Down button until you have the fields arranged
correctly. Click Apply to update the tree structure.

c. Edit the Segment Name and click Apply to update the tree in the left-hand panel.

 Right-click on a segment to get the options available to perform on that segment
(Figure 4-6).

Figure 4-6 CSV segment right-click options

d. Right-click and select Add Segment to display the Add Segment dialog box. Enter
the CSV segment name and click OK. The segment is added to the tree structure.

e. Right-click and select Add Field to display the Add Field dialog box. Enter the CSV
field name and click OK. The field is added to the tree structure.

f. Right-click and select Edit to display the Edit dialog box. Edit the CSV segment
name and click OK. The segment name is changed in the tree structure.

g. Select one or more segments, right-click and select Delete to display the
Confirmation dialog box. Click Yes or No. The segment name(s) are deleted from
the tree structure.

2. Click on a field in the tree structure, to display the details of that element in the Field
Properties section (Figure 4-7).

Figure 4-7 Field Name metadata properties

Edit the Field Name and click Apply to update the tree in the left-hand panel.
3. Right-click on a field to get the options (Edit, Delete) available to perform on that

field.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 27

4. Right-click and select Edit to display the Edit dialog box. Edit the field name and
click OK. The field name is changed in the tree structure.

5. Select one or more fields, right-click and select Delete to display the Confirmation
dialog box. Click Yes or No. The field name(s) are deleted from the tree structure.

6. Drag-and-drop a field or segment to another area in the tree to rearrange the tree
contents. Moving a segment takes its complete sub-tree with it. You may not drag-
and-drop the root segment; it must remain as the root, but its fields may be moved.
The cursor indicates when the field or segment can be dropped.

7. The Reset button can be used to reset changes made before selecting Apply.
8. The Delete button can be used to delete an element from the tree.

Validating the CSV Specification

Once you are satisfied with the CSV specification, you can validate it by performing the
following steps.

1. Select File > Validate or select the Validate icon from the tool bar to display the
Validate dialog box (Figure 4-8).

Figure 4-8 CSV Validate options

2. Select one of the following:
a. To validate the specification, click Validate.

caAdapter 4.0 User’s Guide

28

b. Or select Validate CSV Data Against Specification to test a CSV data file against
the specification. Click Browse to display the Open CSV File dialog box. Select the
appropriate .CSV file and click Open. Click Validate.

3. The Dock validation results check box is automatically selected so that the messages
are displayed in the right-hand panel, after the validation dialog is closed. The read-only
validation messages are displayed. See caAdapter Mapping Tool Validation for more
information on using the validation messages.

Saving a CSV Specification

When you are finished working on the CSV specification, select File > Save or File > Save
As from the menu bar or click the save icon on the tool bar to create an xml-like file
describing the tree structure. This file is portable and can be opened by the same or another
user later.

Generating a Report

When the CSV Specification tab is selected, you can export the CSV specification into an
Excel spreadsheet by performing the following steps.

1. Select Report > Generate Report from the menu bar to display the Select File to Save
Generated Report dialog box.

2. Enter a file name and click Save. A “Report has been successfully generated” message
displays.

A part of a generated CSV report is shown in Figure 4-9.

Figure 4-9 Part of a generated CSV report

Target Specification

HL7 v3 Specification

Business Rules

Following are the business rules for the HL7 v3 specification:

• Abstract data types must be specialized.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 29

• A choice must be selected on choice options.

• If an element’s cardinality is one then it must have either a default value or a mapping.

• If an element’s cardinality is greater than one then you have a choice to add multiple
fields.

• Only mandatory clones are included when a new HL7 v3 specification is first created.
Optional clones may be added.

• nullFlavor filed is optional.

• Address data types are only enabled with a pre-defined subset of its data fields. All other
data fields can be optionally added or removed.

Step‐by‐Step Instructions

This section contains the detailed instructions on how to use the mapping tool to create or
update an HL7 v3 specification.

Overview of HL7 v3 Specification Tab

The HL7 v3 specification tab (Figure 4-10) allows you to identify the hierarchy of elements
needed for your data based on what is available in the predefined structure of an HL7 v3
message type. You update the basic specification to reflect your specific requirements, such
as adding multiples of fields with a cardinality of greater than one, including or excluding
clones, defining concrete data types for abstract ones or selecting choice options.

caAdapter 4.0 User’s Guide

30

Figure 4-10 HL7 v3 Specification tab

The HL7 v3 specification tab separates the tree structure in the left-hand panel from the
properties and validation messages in the right-hand panel. The tree structure displays the
hierarchy of elements that represent the way data in the .h3s files are organized. The
elements are designated as follows:

• C - Clone

• A - Attribute

• D - Data Type

Typical features of the tree structure are used, such as the ability to expand and collapse a
branch of the tree using the + and - symbols respectively. The properties panel allows you to
update some information such as the user-defined default value for a given data type field or
to select a concrete data type for a given Attribute. Right-click on an element to display the
actions available as shown in the submenu in Figure 4-11. The available options are regular
font.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 31

Figure 4-11 Options for HL7 v3 elements

The following sections describe how to create, update, validate, and save the HL7 v3
specification.

Creating and Opening an HL7 v3 Specification

You must either create a new or open an existing HL7 v3 specification. The following steps
describe how to create a new HL7 v3 specification.

1. Select File > New > CSV to HL7 v3 Mapping and Transformation Service > HL7 v3
Specification to display the HL7 v3 Specification dialog box with valid message types.

2. Select the appropriate HL7 message category and message type from the drop-down
lists (Figure 4-12) and click OK.

caAdapter 4.0 User’s Guide

32

Figure 4-12 Example HL7 v3 message types

Currently, the mapping tool supports all message types as defined by HL7 standards

3. A new HL7 v3 specification tab displays with the name untitled_1.h3s.

To open an existing HL7 v3 specification, select File > Open > HL7 v3 Specification (.h3s)
or File>Open >HL7 V3 Specification (.xml) to display the Open HL7 v3 Specification
(H3S) File dialog box. Select a File name to open and click OK. The HL7 v3 specification
displays in a tab with the name of the file and its extension.

Defining inline Text

The data type field named inline Text is caAdapter's way of referring to text that appears
between xml tags as opposed to being a value assigned to an xml attribute. The names of
data types designed with inline Text fields are configured within the caadapter.properties file
under the item: caadapter.hl7.attribute.inlinetext.required. The data types of address parts
and name parts are assigned as system default. Any other data type may be added in. For
example, in the following xml, "Rockville" is the inlineText: <city>Rockville</city>. But in the
following xml, "WP" is the value for an xml attribute: <addr use="WP">. Enter the required
text for such an attribute in the User-defined Default Value field.

Defining Units of Measure

Some HL7 v3 data types contain units of measure properties. These units of measure must
match those specified in the Unified Code for Units of Measure (UCUM). The UCUM is a
code system intended to include all units of measure being contemporarily used in
international science, engineering, and business. For a complete list, see
http://aurora.regenstrief.org/UCUM/ucum.html.

Defining Default Data

User-defined default values are pre-defined constants for data type field values. These
defaults allow you to assign values for data type fields that may not be available from the
source data. For example, if the root for all user ids is common across the organization, this
value can be entered in the target specification. HL7 structural attributes and other elements
that have their values fixed by the HL7 v3 standard cannot have user-defined default values.

User-defined default values are overridden by values mapped from a data source. While
required attributes should always be populated with either an HL7-defined or user-defined

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 33

default value, optional ones are only populated when a map is present for that data type.
Table 4-4 shows the expected behavior for attributes that are mapped with a CSV value,
mapped with a null CSV value and unmapped data types.

 Mapped to Non-Null
Field

Mapped to
Null Field UnMapped

Optional CSV Value Default Value Element not created unless
other sibling fields are mapped

Optional(Force xml) CSV Value Default Value Default Value

Required CSV Value Default Value Default Value

Mandatory CSV Value Default Value Default Value

Table 4-4 Default value behavior

“Optional” means that the element is optional in the target message. It is not required if it
has not been mapped.

“Optional (Force xml)” means that the element is optional in the HL7 MIF specification, but it
is required by the user to create an empty element with a default value.

“Mandatory” means that the value may not be NULL, unless its container (clone, attribute,
etc.) is NULL. Required means values must be supported but they may be NULL.

Defining Object Identifiers (OIDs)

HL7 v3 artifacts use OIDs to identify coding schemes and identifier namespaces. A full list of
HL7 assigned OIDs, and the details of the registered schemes, is available from the OID
Registry page of the www.hl7.org web site (Members Only section). There are two types of
OIDs that can be used within an HL7 message:

1. HL7 OIDs
2. Existing OIDs

In HL7, OIDs are assigned within the appropriate branch of the HL7 OID root
(2.16.840.1.113883). If you are interested in assigning an OID to a scheme, be sure to
check that the scheme you are assigning does not already have an OID assigned to it within
the HL7 OID hierarchy. The process of registering an existing OID with HL7 involves adding
an OID and its descriptive data to a central registry. The OID does not have to be within the
HL7 root OID or any other specific root or branch OID. Once a scheme has been registered,
no other OIDs that identify the same scheme can be registered.

 Examples of OIDs used in HL7 are:

• Coding schemes created by professional bodies that are intended to be used widely. For
example, Systematized Nomenclature of Medicine (SNOMED), Logical Observation
Identifiers, Names and Codes (LOINC), International Classification of Diseases (ICD),
etc. need to be registered by HL7 International.

• Civil namespaces. Identification schemes such as driver’s license, social security

caAdapter 4.0 User’s Guide

34

numbers need to be registered by the appropriate HL7 Affiliate.

• In the HL7 v3 specification, when you have a codeSystem data type field, you must
assign the OID in the User-defined Default Value field (Figure 4-13) or you must have
a map.

Figure 4-13 OID entered in the User-defined Default Value field

Adding Clones to the HL7 v3 Specification

The ability to add or remove a clone is the way the caAdapter Mapping Tool accommodates
optional associations in an HL7 message. Due to the size and complexity of numerous
associations, nodes are initially created in the tree for mandatory associations only. You
must customize the HL7 v3 specification to include the associations that are needed for your
particular mapping plans by using the Add Clone and Remove Clone options.

Perform the following steps to add associations or expand one recursive child generation at
a time.

1. Right-click on an element name with an optional or recursive relationship and select Add
Clone to display the Clone List dialog box (Figure 4-14).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 35

Figure 4-14 Clone List dialog box

2. In the Clone List dialog box, select one or more of the unused clones and click OK. The
corresponding nodes are added to the tree in the left-hand panel.

3. There may be further optional associations available on the new clones just added. This
is the case with a recursive association, where you could continue adding recursive
levels to an arbitrary level as needed by using Add Clone.

Perform the following steps to remove clones.

1. Right-click on an element name with an optional or recursive relationship to its parent
and select Remove Clone to display the Clone List dialog box.

2. In the Clone List dialog box, select one or more of the unused clones and click OK. The
corresponding nodes are deleted from the tree in the left-hand panel.

Adding and Deleting Multiples to the HL7 v3 Specification

Message elements that have either a cardinality of 0..* or 1..* and/or a data type that
involves a collection (for example, SET, BAG, LIST) contain the [Multiple] label. The
[Multiple] label is displayed as a numbered label to indicate the number of elements defined
for that multiple (for example, [1], [2], etc.). These items appear in the HL7 v3 specification
as simple repeats of the element. To accommodate the possible requirement of mapping
more than one source element to the same target element, you must add multiples of these
elements.

Perform the following steps to add multiple clones.

1. Right-click on a clone that contains a [Multiple] label (or a [1] label, which is the first of
this group of multiple clones) and select Add Multiple Clone (Figure 4-15).

caAdapter 4.0 User’s Guide

36

Figure 4-15 HL7 v3 specification multiple clones

1. Another element is created and the label is changed to the number of elements created.

Perform the following steps to remove multiple clones.

1. Right-click on a clone with the [xx] label (where xx is a number greater than one),
indicating that it is a replicated clone, the Remove Multiple Clone is enabled, select
Remove Multiple Clone. See Figure 4-15 HL7 v3 specification multiple clones.

2. One multiple of the element is removed from the tree structure.

Perform the following steps to add multiple attributes.

1. Right-click on an attribute with the [1] label, indicating that it is a replicated attribute, the
Remove Multiple Attribute is enabled, select Remove Multiple Attribute (Figure
4-16).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 37

Figure 4-16 HL7 v3 specification multiple attributes

2. Another element is created and the label is changed to the number of elements created.

Perform the following steps to remove multiple attributes.

1. Right-click on an attribute with the [1] label, indicating that it contains multiple numbered
labels, and select Remove Multiple Attribute.

2. One multiple of the attribute is removed from the tree structure.

If a clone contains one or more child choice associations, it is always enabled with
“Adding and Deleting multiple clone” without influencing its cardinality. This feature is
implemented to support more than the possible chosen item for the child choice
associations. Figure 4-17 and Figure 4-18 show that the patient is a clone with a
cardinality of 1..1, but is enabled with “Add Multiple Clone” and “Remove Multiple Clone”
actions.

caAdapter 4.0 User’s Guide

38

Figure 4-17 Clone with one or More Child (Patient 1)

Figure 4-18 Clone with one or More Child (Patient 2)

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 39

Updating Abstract Data Types in the HL7 v3 Specification

Abstract data types occur when HL7 message developers do not specify a particular data
type to use when populating attributes and are indicated by a [QTY] or [ANY] label in an
HL7 v3 specification. You must assign a specialized data type to the abstract element by
performing the following steps.

1. Select the element name in the left-hand panel to display its properties in the HL7 v3
Specification Properties panel.

2. Use the drop-down list in the Data Type field (Figure 4-19) to select the data type. Click
Apply.

Figure 4-19 Data Type drop-down list

3. After assigning a concrete data type with an abstract data type, the system will retrieve
the data fields of the assigned data type and attach those to the original attributes
accordingly. Repeat steps 1 and 2 above if you need to change a different concrete data
type.

Using Choice Boxes in the HL7 v3 Specification

HL7 choice boxes pose a challenge in the representation of options in a mapping tool.
Currently, the caAdapter Mapping Tool's implementation limitation for choice boxes is the
ability to choose only a single option to which all logical records in the source file may be
mapped. The presence of a choice is indicated with a [Selected Choice] or [Choice
Unselected] label.

caAdapter 4.0 User’s Guide

40

Perform the following steps to make a choice selection for an element.

1. Right-click on an element name that contains a [Choice - Unselected] label and select
Select Choice to display the Clone List dialog box.

2. Select one and only one clone from the displayed list and click OK. This creates an
expandable node with the [Selected Choice for] label displayed beside the parent clone
node (Figure 4-20).

Figure 4-20 Selected choice

Note: Since a business rule for an HL7 v3 specification specifies a choice must be selected,
there is no option to unselect a choice. However, if the parent association is optional, the
association can be dropped and re-added.

Enabling and Disabling Force xml with an Optional Clone

If a clone is optional for the target message specification, right click the tree node to make
Enable Force xml active (Figure 4-21).

If a clone is optional for the target message specification, and it has been enabled, right click
the tree node to enable Disable Force xml. Enable Force xml or Disable Force xml will
inform the HL7 message transformation engine whether or not to create an empty element if
no mapping has been set (Figure 4-22).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 41

Figure 4-21 Enable Force xml

Figure 4-22 Disable Force xml

caAdapter 4.0 User’s Guide

42

Adding and Removing Parts of an Address Data Type

If the system has predefined a subset of data fields for an attribute with an Address data
type, other data fields can be added or removed (Figure 4-23 and Figure 4-24).

Figure 4-23 Adding or removing parts of address data type

Figure 4-24 Modifying an Address Data Type

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 43

Validating the HL7 v3 Specification

You can validate a portion of or the entire HL7 v3 specification. A clone must be selected to
perform the validation. The validation is performed on the selected clone and any children
and further descendants below it in the tree structure.

Perform the following steps.

1. Select File > Validate, select the Validate icon from the tool bar or right click a clone
and select Validate to perform the validation.

2. A Message dialog box displays (Figure 4-25) indicating the status of the validation. Click
OK.

Figure 4-25 HL7 v3 specification validation

3. The messages display in the Validation Messages panel (caAdapter Mapping Tool
Validation).

Saving an HL7 v3 Specification

When you are finished working on the HL7 v3 specification, select File > Save or File >
Save As from the menu bar, or click the save icon on the tool bar. If the specification is
being saved for the first time, the system prompts to select either an .h3s or .xml format
(Figure 4-26). To change the format after it has been selected the first time, select Save As.

caAdapter 4.0 User’s Guide

44

The file is portable and can be opened by the same or another user later.

Figure 4-26 Saving HL7 Specifications

Map Specification
A map is a user-defined, direct relationship between two pieces of specification elements.
Using the mapping tool, you create links between source fields and target data type fields
and between source segments and target clones or attributes. Links between source fields
and target data type fields are used to represent data relationships. Links between
segments and clones or attributes are used to explicitly link concepts that provide a context
to the data and are also called container mappings. Links may also be created between
source fields and input parameters of a variety of functions provided by caAdapter, and
between the function's output parameters and target elements.

Business Rules

Following are the business rules for a map specification:

• It must contain a valid mapping pair (source and target files).

• The source element referenced in the map specification must exist in the source
specification.

• The destination element referenced in the map specification must exist in the destination
specification.

• A mandatory MIF element must have either a mapping in the map specification or an
HL7-defined or user-defined default value in the HL7 v3 specification.

• Each input parameter for a function must have a mapping or a constant defined.

• Each output parameter for a function must have a mapping.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 45

Step‐by‐Step Instructions

This section contains the step-by-step instructions to create the mappings. See Appendix A on
page 153 for detailed information on mapping scenario 8 included with the example data.

Overview of the Map Specification Tab

The map specification tab allows you to assign fields in a source specification to elements in a
target specification. For the source (the CSV specification) and the target (HL7 v3 specification),
the hierarchy is visually represented using an expandable/collapsible tree structure. The target
specification can either be .h3s or .xml format.

The map specification tab (Figure 4-27) consists of the following:

• Two tree panels - contain the source specification in the left-hand panel and the target
specification in the right-hand panel.

• Center mapping panel - displays the lines that indicate the mapping between source
and target elements and any functions that are used in the mappings.

• Functions panel - displays a tree of available functions.

• Properties panel - changes depending on the item selected in the other panels (for
example, displays link properties, HL7 v3 specification data type field properties, CSV
field properties, etc.)

Figure 4-27 Map Specification tab

caAdapter 4.0 User’s Guide

46

The tree structures are read-only; you must make any changes to the tree structures in the
source or target specification tabs. You can only define the mappings from this tab.

Warning! Adding to source or target specifications that are referenced in a map file is
allowable, but editing or removing source or target elements may result in a related mapping
(link) getting dropped or producing other unpredictable behavior.

The following sections describe how to access, create, and save the map specification.

Creating and Opening a Map Specification

You must create a new or open an existing map specification.

Perform the following steps to create a new map specification.

1. Select File > New > CSV to HL7 v3 Mapping and Transformation > Map
Specification from the menu bar to open a new mapping tab with empty source and
destination panels.

2. Click Open Source to display the Open Source File dialog box.
3. Select the source file and click Open to populate the source panel with its tree structure.
4. Click Open Target to display the Open Target File dialog box.
5. Select the target file (.h3s or .xml format) and click Open to populate the target panel

with its tree structure.

Perform the following steps to open an existing map specification.

1. Select File > Open > CSV to HL7 v3 Map Specification. The Open Map File dialog box
displays.

2. Select the map specification file and click Open to display the source and target trees
along with any existing mappings.

Updating the Map Specification

Perform the following steps to create a mapping.

1. Select a source element and drag it to the appropriate target element. The cursor
indicates if the source is not allowed to be mapped to the target element (Figure 4-28
and Figure 4-29).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 47

Figure 4-28 Mapping is not allowed

The cursor indicates when the source can be mapped to the target element. Drop the source
on the target element.

Figure 4-29 Mapping is allowed

2. Once a source field is mapped to a target element, a mapping line appears between
them in the mapping panel. Figure 4-30 shows a mapping line between id_root and
root.

caAdapter 4.0 User’s Guide

48

.

Figure 4-30 Mapping line between a source field and target element

To delete a mapped line or a function in the center panel, perform the following steps.

1. Select the item you want to delete, right-click and select Delete.
2. Click Yes to confirm the deletion. The selected item is deleted from the mapping.

The Properties panel displays information on the selected element. When you select a
source element, the CSV Field Properties displays (Figure 4-31).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 49

Figure 4-31 CSV Field Properties panel

When you select a mapping line, the Link Properties displays (Figure 4-32).

caAdapter 4.0 User’s Guide

50

Figure 4-32 Link Properties panel

When you select a target element, the HL7 v3 Specification Attribute Properties, HL7 v3
Specification Data Type Field Properties or the Clone Attribute Object Properties
displays (Figure 4-33).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 51

Figure 4-33 Attribute properties

When you select a function either in the Mapping panel or in the Functions panel, the
Function Properties display. When you select a function group in the Functions panel, the
Function Group Properties display (Figure 4-34).

caAdapter 4.0 User’s Guide

52

Figure 4-34 Function Group Properties

Using Functions in Map Specifications

The Functions panel (Figure 4-35) provides a list of system defined functions that facilitate
the data transformation requirement. Functions are grouped by functional categories (for
example, constant, date, math, string, etc.). You may use a function in the mapping to effect
a change of the source element to the target element. For example, you can use the
concatenate function to add a prefix to an element.

Note: You can add your own required functions to the function library. See Adding Functions
to the Function Library on page 114 for instructions.

When a function is selected in the function library, its properties information displays, such
as name and number of input and output parameters, in the Function Properties panel
(Figure 4-35).

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 53

Figure 4-35 Functions in mapping specification

Perform the following steps to include a function in your mapping specification.

1. Add a function to the mapping panel. Select a function in the Functions panel, right-click
in the center panel and select Add Function, or drag-and-drop the required function
from the Functions panel to the mapping panel. Move this function box around the
mapping panel as convenient to attach the mapping lines.

2. Drag-and-drop the source field(s) onto the input parameters. Figure 4-36 shows the
selected field text being dropped as an input to the Initcap function.

Figure 4-36 Adding an input to a function

caAdapter 4.0 User’s Guide

54

3. Drag-and-drop the target field onto the output parameter. The mapping lines go from the
source fields into the function box and out of the function box to the target fields.

Editing a Constant Function

Perform the following steps to edit a constant function.

1. Select a constant function in the mapping panel, right-click and select Edit Constant.
2. In the Edit Constant dialog box, change the Type and/or Value for the constant and

click OK.

Using the Date Function

The date function, changeFormat, uses the Java SimpleDateFormat class. See
http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html for more
information. Table 4-5 show the correct syntax for each date or time component.

Date or Time
Component Presentation Example Pattern 1 Example Pattern 2

Year Lowercase y yy => 05 yyyy => 2005

Month Uppercase M MM => 07 MMM => JUL

Day Lowercase d dd => 07 or 17 (7th or
17th date of the
month)

d => 7 or 17

Hour Uppercase H or
lowercase h

Using 2 PM
HH => 14

 hh => 02, h => 2

Minute Lowercase m mm => 09 m => 9

Second Lowercase s ss => 12

Millisecond Uppercase S SSS => 002

Table 4-5 Date formats

For example, July 7th 1988, PM 02:23:14 can be presented in the following ways:

• yyyyMMddHHmmss => 19880707142314

• dd-MMM-yyyy, HH:mm:ss => 07-JUL-1988, 14:23:14

• MM/dd/yy => 07/07/88

Refreshing the Map Specification Tab

Click the Refresh button on the tool bar to check and update the associated CSV specification or
HL7 v3 specification used in the mapping panel. If changes to the mapping panel were required,

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 55

an information message (Figure 4-37) displays.

Figure 4-37 Mapping panel refreshed message

This option allows you to update and save the associated CSV or H3S file in their own tabs,
while you are also performing the mapping between the two.

If either the CSV or H3S files are updated and saved in their own tabs, and you switch back
to the mapping panel, then a dialog (Figure 4-38) displays to notify you of the changes. You
are not forced to refresh the mapping panel at this time, since you may have some pending
mapping activity unsaved.

Figure 4-38 Refresh mapping panel recommendation

Validating the Map Specification

Perform the following steps to validate the map specification.

1. Select File > Validate or select the Validate icon from the tool bar to perform the
validation.

2. A Message dialog box displays indicating the status of the validation. Click OK.
3. The detailed messages display in the Validation Messages dialog box (caAdapter

Mapping Tool Validation).

Saving a Map Specification

When you are finished working on the map specification, select File > Save or File > Save
As from the menu bar or click the save icon on the tool bar to save the file. This file is
portable and can be opened by the same or another user later.

Warning! The map specification has an internal reference to the full path name of the source
and target specification files and those must be accurate to process the conversion or edit a

caAdapter 4.0 User’s Guide

56

map specification successfully. If you are sharing map specification files with other users,
you must send all three files, the CSV specification (.scs), HL7 v3 specification (.h3s), and
map specification (.map); not just the map specification. Furthermore, the CSV and HL7 v3
specification files must be in the same path locations as they were on the machine where
they were created. Alternatively, the path name can be manually removed by editing the
.map file however this is dangerous and unpredictable results may occur if the file is
changed improperly.

Generating a Map Specification Report

When a map specification tab is selected, you can generate a report on the status of the
mapping specification by performing the following steps.

1. Select Report > Generate Report from the menu bar to display the Select File to Save
Generated Report dialog box.

2. Enter a File name and click Save. A “Report has been successfully generated” message
displays.

The report is an Excel spreadsheet containing the status of the mapping specification. The
report contains up to six worksheets (tabs) within the generated report. Under the mapped
category, it contains the mapping status between:
• Source and target - Mapped(Source_Target)

• Source and function - Mapped(Source_Function)

• Function and target - Mapped(Function_Target)

• Function and function - Mapped(Function_Function)

Under the unmapped category, it contains the unmapped elements:
• Source - Unmapped_Source

• Target - Unmapped_Target

HL7 v3 Message
Generating the HL7 v3 message is the end goal in using the mapping tool. xml HL7
message instances are created using the map specification and a corresponding CSV data
file.

Business Rules

Following are the business rules for creating an HL7 v3 message:

• You must have data in a CSV format.

• The map specification must be valid.

• The source and target specifications used to create the map must be located in the
same directory as they were when the map specification was created (or the map
specification must have been edited to point to the new location of these files if they
were moved). The map specification uses the references to these files as it converts the

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 57

data into the new format.

Step‐by‐Step Instructions

This section contains the step-by-step instructions to generate the HL7 v3 message.

Note: There is no File > Open option that corresponds to HL7 v3 messages since you
always want to generate fresh messages based on the current selection of source and map
files.

Overview of the HL7 v3 Message Tab

The purpose of the HL7 v3 Message tab is to allow you to generate and view the xml instances
and messages converted from a data file and map specification. Each data file may have one or
more logical records which result in a corresponding number of xml instances (or more
depending on the structure of the mapping). The user interface allows you to navigate between
the instances. The HL7 v3 message tab (Figure 4-39) contains the following four panels:

• Regenerate and navigation buttons

• Name of data file and map specification used

• Scrollable text fields for xml instances

• Scrollable text fields for validation messages

Figure 4-39 HL7 v3 Message tab

caAdapter 4.0 User’s Guide

58

Starting the Conversion Process

Perform the following steps to convert a data file into an HL7 v3 message.

1. Select File > New > CSV to HL7 v3 Mapping and Transformation > HL7 v3 Message
from the menu bar to display the HL7 v3 Message dialog box (Figure 4-40).

Figure 4-40 HL7 v3 Message dialog box

2. Click Browse next to Data File to display the Open Data File dialog box.
3. Select the data file you want to use in the conversion process and click Open.
4. Click Browse next to Map Specification to display the Open Map Specification dialog

box.
5. Select the map specification file you want to use in the conversion process and click

Open.
6. Click OK to generate HL7 v3 messages from the selected files.
7. Given the underlying data and mapping structure, it could take a long time to complete

the HL7 v3 message generation task. If the system estimates that it will take longer than
ten seconds (as is defined and configurable in the source distribution), then the
Question dialog displays as shown in Figure 4-41. Click Yes to start the process or click
No to abort the process given the estimated time.

Figure 4-41 HL7 v3 message generation confirmation

8. After a Yes confirmation, the process starts and a progress dialog box displays (Figure
4-42). The system monitors the transformation progress for both loading the data, which
includes reading the map file, source and target data specification; and the count of
messages generated.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 59

Figure 4-42 HL7 v3 message generation progress dialog

9. Once the process starts, you can cancel the process by clicking Cancel. If cancelled, the
underlying generation process is terminated and an information dialog displays (Figure
4-43).

Figure 4-43 HL7 v3 message generation cancelled

10. A message displays (Figure 4-44) after the overall process completes. Click OK.

Figure 4-44 HL7 v3 message process complete

11. The HL7 v3 Message tab displays.

Using the Basic Features of the HL7 v3 Messages Tab

The two main features of the HL7 v3 Message tab (Figure 4-45) are the two scrollable text fields
containing an xml instance and the associated error, warning and/or informational messages
generated during the conversion process.

caAdapter 4.0 User’s Guide

60

Figure 4-45 HL7 v3 Message tab

Click the Previous and Next buttons to cycle through the xml messages one at a time. As the
messages change, the validation messages change. See caAdapter Mapping Tool Validation on
page 22 for more information on the validation messages. Click the Regenerate button to
regenerate the messages from scratch using the same data file and map specification.

Saving an HL7 v3 Message

Select File > Save or File > Save As from the menu bar or click the save icon on the tool
bar to save the HL7 v3 message. If there is more than one instance of a message, then the
files are saved with number extensions (for example, example_message_1.xml,
example_message_2.xml, example_message_3.xml).

Note: Validation messages are not saved with their corresponding xml message and must
be saved separately using the Save button in the Validation Messages panel.

Transforming an HL7 Message into a CSV Format
This version of caAdapter provides the capability to map and transform an HL7 messages
into a CSV structured files. This capability addresses such requirement where HL7 v3 data
must be persisted into a system already capable to of persisting data from CSV files.

Business Rules

The business rules are similar to those that apply to transforming CSV data into HL7 v3
messages with the source and target reversed, i.e. transforming HL7 V3 into CSV
structure/file.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 61

Step‐by‐Step Instructions

This section contains the step-by-step instructions to generate a CSV dataset from an HL7
V3 message.

Note: There is no File > Open option that corresponds to CSV data file since you always
need to generate fresh CSV data based on the current selection of the source HL7 V3
message, and the map files.

Reuse of the HL7 v3 Message Tab

The purpose for reusing the HL7 V3 Message tab is to generate and view the CSV data
generated from the HL7 V3 message data. Each data file may have one or more logical records
which result in a corresponding number of CSV meta instances (or more depending on the
structure of the mapping). The user interface allows navigating between the various instances.
The reused HL7 v3 message tab (Figure 4-39) contains four panels:

Figure 4-46 Displaying CSV Data with HL7 v3 Message Tab

Starting the Conversion Process

Use the following steps to convert an HL7 v3 message into a CSV data file.

1. Select File > New > HL7 V3 To CSV Transformation Service> New HL7 V3 To CSV
from the menu bar to display the HL7 V3 To CSV dialog box (Figure 4-47).

caAdapter 4.0 User’s Guide

62

Figure 4-47 HL7 V3 to CSV Dialog Box

2. Click Browse next to Data File to display the Open Data File dialog box.
3. Select the data file to use in the conversion process and click Open.
4. Click Browse next to Map Specification to display the Open Map Specification dialog

box.
5. Select the map specification file to use in the conversion process and click Open.
6. Click OK to generate CSV data file from the selected files.

Click the Previous and Next buttons to cycle through the CSV data one at a time. As the
data change, the validation messages change as well. See caAdapter Mapping Tool
Validation for more information on the validation messages. Click the Regenerate button to
regenerate the data from scratch using the same data file and map specification.

Saving the CSV Data File

Select File > Save or File > Save As from the menu bar, or click the Save icon on the tool
bar, to save the data file.

 Chapter 4 CSV To HL7 v3 Mapping and Transformation

 63

 64

Chapter 5 HL7 v2 to HL7 v3 Conversion

This chapter provides instructions on using caAdapter to map and convert an HL7 v2
message to an HL7 v3 message.

Topics in this chapter include:

• Understanding the Mapping and Transformation Processes on this page
• Using the HL7 v2 to HL7 v3 Module on page 66
• Advanced HL7 v2 to HL7 v3 Mapping on page 67

Understanding the Mapping and Transformation Processes
There are two major steps involved in converting an HL7 v2 message to an HL7 v3
message:

• Step 1: Map and convert the HL7 v2 message to CSV format

• Step 2: Map and convert the CSV file (which is equivalent to the original HL7 v2
format), to HL7 v3 format

Figure 5-1 shows the entire conversion process and the sub-steps involved.

Figure 5-1 HL7 v2 to HL7 v3 conversion steps

 Chapter 5 HL7 v2 to HL7 v3 Conversion

 65

Mapping and Converting HL7 v2 to CSV Format

The first step in the process involves using caAdapter to reproduce the HL7 v2 message
in CSV format. The input files in this step are:

1. HL7 v2 Message file
2. HL7 v2 Resources file collection. Those include HL7 v2 specifications files to help

parse the message. The Resources file collection includes four types of files which
describe:
• Message Structure

• Data Type Specs

• Segment Attributes

• Vocabulary Definition

The Resources file collection may vary depending on the version of the HL7 v2. This
release of caAdapter includes the Resources file collections for HL7 v2.4 and HL7 v2.5.
Update to the files reflects the exact “flavor” of the v2.4 or v2.5 used.

The output files in this step are:

1. CSV specification, or an .scs, file. This file defines a CSV file equivalent in structure
to the HL7 v2 message. caAdapter detects the message type, retrieves its
specifications from the Resources file collection, and creates the corresponding
CSV file.

2. CSV data file. This file contains HL7 v2 data in CSV format that corresponds to the
scs specification file described above.

Mapping and Converting CSV File to HL7 v3 Format

In the second step, caAdapter uses the files generated in step 1 to create the HL7 v3
message. The input files in this step are:

1. The CSV specification file created in Step 1.
2. The CSV data file created in Step 1.
2. H3s Files, which contain the specifications for HL7 v3 messages.
4. Using caAdapter’s Mapping Tool, the user will map the data elements from the CSV

file to the proper HL7 v3 message.

Note: caAdapter cannot determine the target HL7 v3 message to which the source v2
message is mapped. The user must have thorough understanding of both HL7 v2
(source) and HL7 v3 (target) message structures to make this determination.

The output files in this step are:

1. CSV to HL7 v3 .map file. This file contains the mapping rules between the CSV file
and HL7 v3. This file will be used by caAdapter’s Transformation Service to create
the actual HL7 v3 message.

caAdapter 4.0 User’s Guide

66

2. HL7 v3 Message. This file contains the transformed data in HL7 v3 format.

Using the HL7 v2 to HL7 v3 Module
This section describes the detailed instructions for using the HL7 v2 to v3 Module which
is organized by the two major steps involved as listed in the previous section.

Select File > New > HL7 v2 to HL7 v3 Conversion Service > HL7 v2 to scs & CSV
Conversion (Figure 5-2).

Figure 5-2 Launching the HL7 v2 to CSV Conversion Module

Use the window in Figure 5-3 to define the input and output files needed to complete
step one of the process. The top two input files are:

• HL7 v2.x Resource file collection directory. This example uses the Resources file
collection for HL7 v2.4.

• HL7 v2.x message file

The bottom two files are the output files that caAdapter will generate:

• CSV File which contains the HL7 v2 message data presented in CSV format.

• A CSV specification file that matches that of the HL7 v2 message.

Figure 5-3 Creating the CSV and SCS Files that Correspond to the HL7 v2 Message

Click the Process button. caAdapter presents a confirmation message that the two output files were
created successfully (

Figure 5-4).

 Chapter 5 HL7 v2 to HL7 v3 Conversion

 67

Figure 5-4 Confirmation Message

In the second step, use the Mapping Module to map the .scs file created in step one to
the appropriate HL7 v3 message. See Chapter 14 for detailed instructions on performing
this task.

Advanced HL7 v2 to HL7 v3 Mapping
The Advanced HL7 v2 to HL7 v3 mapping option provides the following additional
features.

1. Create a CSV specification file without an actual HL7 v2 message. Specify the HL7
v2 message type and trigger event. caAdapter then uses the Resources file
collection to create the corresponding CSV specification file.

2. Explicitly set up the OBX Segment in the CSV specification file. The OBX segment
contains essential clinical information including lab results, X-ray image data,
doctor’s comments, and others. Such information is captured into various OBX data
types, i.e. ST for String, ED for Encapsulated Data, etc. caAdapter provides the
capability to specify the exact OBX data types to include in the generated CSV
specification file.

Generating a CSV Specification File without an Actual HL7 v2 Message

When the user specifies a message type that contains an OBX segment to generate a
CSV Specification file, the “OBX Data Type Selection” on the bottom of the window
becomes active (Figure 5-5). The following options determine the content of the
generated CSV specification file.

• Treat all OBX data types as an ST data type by selecting the ST Data Type Only
radio button.

• Group all OBX data types into an ST data type for simplification by selecting the Yes
radio button in the “Grouping” block.

• Specify the OBX data types to include by selecting the Selecting Data Types radio
button and checking the data types to be included.

Note: When the OBX data types are specified, e.g. ST and ED, caAdapter can only
transform HL7 v2 messages that contain ST and ED OBX data types. If the user
provides an HL7 v2 message containing OBX data types other than ST and ED,
caAdapter will flag those as errors during the transformation process.

Generating a CSV Specification File from an Actual HL7 v2 Message

When the user provides an actual HL7 v2 message to create the CSV specification file,
and the message contains OBX segments, the “OBX Data Type Selection” section on
the bottom of the window becomes active. The following options determine the content
of the generated CSV specification file:

caAdapter 4.0 User’s Guide

68

• Include specifications that correspond to the actual OBX data types provided in the
message by selecting the Apparent Data Type Only radio button.

• Treat all OBX data types as ST data type by selecting the ST Data Type Only radio
button.

• Group the ST, TX, and FT OBX data types into a single ST data type for
simplification by selecting the Yes radio button in the “Grouping” block.

• Specify additional OBX data types to include by selecting the Selecting Data Types
radio button and checking the data types to be included.

Figure 5-5 Advanced HL7 v2 Converting Panel

Figure 5-6 contains an example CSV specification file for an HL7 v2 message that contains
two OBX data types: ST and ED.

 Chapter 5 HL7 v2 to HL7 v3 Conversion

 69

Figure 5-6 Example Case of various forms of OBX segments

 70

Chapter 6 Regulatory Data Services Module

This chapter provides instructions on using the Regulatory Data Services Module (RDS).
This module allows mapping existing data structures to generate regulatory-type data
submission files. This version of caAdapter only supports creating SDTM files from a
database or a CSV source. The user can use the Mapping Tool to map database tables, or
a CSV files, structure to one or more SDTM domain structure. The transformation feature
then transforms and generates corresponding SDTM domain files.

Topics in this chapter include:

• Understanding the Mapping and Transformation Processes on this page
• Mapping a CSV File to SDTM Domain Structures on page 71
• Generating SDTM Datasets from a CSV file on page 75
• Editing an Existing Map File on page 76
• Editing and Printing an Existing Map File on page 77
• Mapping a Relational Database to SDTM Domain Structures on page 78
• Generating SDTM Datasets from a Database on page 82

Understanding the Mapping and Transformation Processes
There are two steps involved in creating SDTM domain datasets from a database or
.CSV files. First, the user must map the data elements from the source to their
corresponding data elements in the SDTM domain structure(s). caAdapter will capture
the mapping specifications in a .map file. The .map file can be edited at a later time if
needed. Second, caAdapter will use the source and map specifications files to generate
the SDTM dataset from the source data files. Those datasets will be stored in a flat file
with a .txt extension. Figure 6-1illustrates the steps involved. Arrows marked with “1”
and “2” correspond to the first and second steps listed above.

 Chapter 6 Regulatory Data Services Module

 71

Figure 6-1 RDS Module Mapping and Transformation Processes

Mapping a CSV File to SDTM Domain Structures
This section contains detailed instructions for using the mapping tool to create a CSV-to-
SDTM .map file.

1. Select File > New > RDS Mapping and Transformation Service > CSV/Database
to RDS Map Specification (Figure 6-2). caAdapter presents a blank map
specification tab (Figure 6-3).

Figure 6-2 Launching the Mapping Tool for CSV to SDTM Mapping

caAdapter 4.0 User’s Guide

72

Figure 6-3 Blank Map Specification tab

2. Click the Open SCS File button on the left panel and select a .scs file (Figure 6-4).
caAdapter will load the CSV specification file, or the .scs file, in the left panel (Figure
6-5).

Figure 6-4 Select a CSV File Specification (.scs File)

 Chapter 6 Regulatory Data Services Module

 73

Figure 6-5 A CSV Specification file loaded in the left panel

3. Click the Open SDTM Definition File button and select the define.xml file which
contains SDTM Domain Specifications (Figure 6-6). caAdapter displays the SDTM
Domain specifications in the right panel (Figure 6-7).

Figure 6-6 Select “define.xml” file

caAdapter 4.0 User’s Guide

74

Figure 6-7 SDTM Domain Structure loaded in the right panel

4. Using the mouse, drag a data element from the left panel and drop it over the
corresponding field in the right panel. caAdapter draws a line linking the two
elements depicting a mapping rule. Repeat the same procedure for the rest of the
data elements in the left panel (Figure 6-8). This version of caAdapter supports
mapping one CSV file to more than one SDTM domain.

 Chapter 6 Regulatory Data Services Module

 75

Figure 6-8 Data Elements Mapped from the CSV to the SDTM Domain Structure

5. Click the Save icon on the tool bar to save the mapping specifications to a .map file
(Figure 6-9).

Figure 6-9 Saving the Map file

Generating SDTM Datasets from a CSV file
Once the .map file is created, as presented in the previous section, caAdapter will use
the .map and .CSV file to generate SDTM datasets. This section contains detailed

caAdapter 4.0 User’s Guide

76

instructions on how to perform this task.

1. Select File > New > RDS Mapping and Transformation Service > RDS Text File as
shown in Figure 6-10.

Figure 6-10 Launching the SDTM File Generation Process

2. caAdapter opens the [Create RDS Text File] dialog box (Figure 6-11) for specifying
the .map file.

Figure 6-11 Selecting the .map file

3. Once the .map file has been specified, caAdapter displays the SDTM Text File dialog
box for specifying the CSV file containing the data, and the target directory where the
SDTM file(s) will be saved (Figure 6-12).

Figure 6-12 SDTM Text File

4. Click the Transform button. caAdapter creates a SDTM data file(s) which
corresponds to the CSV file using the .map file. A confirmation message is displayed
(Figure 6-13).

Figure 6-13 SDTM Data file was Created Successfully

Editing an Existing Map File
caAdapter provides the capability to edit a previously saved .map file. This section
contains detailed instructions on how to perform this task.

 Chapter 6 Regulatory Data Services Module

 77

1. Select File > Open > CSV/Database to RDS Map Specification (Figure 6-14).

Figure 6-14 Launching the Edit Map File Feature

2. Once the .map file is selected, the file opens in the Mapping Tool. The file is now
ready to be edited (Figure 6-15).

Figure 6-15 Mapping Tool with the Map File loaded

Editing and Printing an Existing Map File
Once a .map file has been created and saved, you can use caAdapter to edit the
mapping specification. To edit the .map file select File > Open > CSV/Database to RDS
Map Specification. Locate the .map file you wish to edit. caAdapter will display the file
in the Mapping Tool.

caAdapter also provides the capability to generate a report of the mapping specification
in MS Excel format. You can use this feature from the Mapping Tool. Select Report >
Generate Report from the main menu. caAdapter will create a .xls file capturing the
mapping specification.

caAdapter 4.0 User’s Guide

78

Mapping a Relational Database to SDTM Domain Structures
caAdapter provides the capability to generate SDTM domain datasets from an existing
database. The user can use the Mapping Tool to map various fields in the database
tables to SDTM data elements in one or more domains. Once the mapping has been
completed, the user can then use the Data Viewer utility to construct the SQL queries
necessary for extracting the data from the database to create the SDTM datasets.

This section contains detailed instructions on using caAdapter to map a relational
database to SDTM domain structures.

The first step is to define and create the database connection profile. The connection
profile contains the necessary information for caAdapter to access the database. Please
note that this version of caAdapter was only tested with an Oracle database.

1. To create the profile, select File > New > RDS Mapping and Transformation
Service > CSV/Database to RDS Map Specification as shown in Figure 6-16.
caAdapter opens a blank map specification tab (Figure 6-17).

Figure 6-16 Launching the Mapping Tool for CSV to SDTM Mapping

Figure 6-17 Blank Map Specification Tab

2. Click the Choose Database button. The Enter Connection Parameters dialog box
displays (Figure 6-18).

 Note: When caAdapter is opened for the first time, the left panel will not have any
profiles listed.

 Chapter 6 Regulatory Data Services Module

 79

Figure 6-18 Enter Connection Parameters dialog box

3. Click the New Profile button. The New Profile dialog box displays. Fill in values for
all fields specifying database connection information as shown in Figure 6-19. Click
the OK button. This step creates the Connection Profile. To view the new profile you
just created, double click the profiles folder; the new profile is displayed in Figure
6-20. Once the profile has been created, caAdapter saves it for future use until it is
deleted. Delete the profile by right-clicking on the profile name in the Enter
Connection Profile’s left panel and select Delete Profile.

Figure 6-19 New Profile Dialog Box

Figure 6-20 New Profile information displayed

caAdapter 4.0 User’s Guide

80

4. Fill in the password and click the Connect button. caAdapter accesses the database,
reads the schema, and presents all tables and views that the user has been
authorized to access in the left panel. Figure 6-21 shows an example database
schema opened in the left panel of the Mapping Tool.

Figure 6-21 Database Schema Displayed in the Left Panel

5. Open the define.xml file to populate the right panel with SDTM domain structures.
Use the Mapping Tool to map database columns to SDTM data elements as shown
in Figure 6-22.

Figure 6-22 Mapping Database Columns to SDTM Data Elements

 Chapter 6 Regulatory Data Services Module

 81

6. Once the mapping is complete, click the Save button to save the map file. caAdapter
displays a confirmation message, and provides the option to open the Data Viewer,
Figure 6-23. The Data Viewer is a visual tool which uses the mapping information to
assist the user in further refining the SWL queries needed to create the SDTM
datasets. If the Data Viewer is not chosen for use, caAdapter creates the queries and
adds them to the .map file.

Figure 6-23 Option to Open the Data Viewer Tool

7. When the Yes button is clicked in the previous step, caAdapter opens the Data
Viewer tool. The Data Viewer has a tab for each SDTM domain used in the mapping.
Each domain tab displays all database tables with columns used in the mapping. The
“designer” view can be used with drag-and-drop features to add joins between
tables, insert new tables, select additional fields, etc. The “syntax” view shows the
constructed SQL query. The query can also be modified in the “syntax” view. See
Figure 6-24 and Figure 6-25. The Data Viewer has additional capabilities that help
with creating the queries to include validating and running the query.

Figure 6-24 Data Viewer Module (Designer View)

caAdapter 4.0 User’s Guide

82

Figure 6-25 Data Viewer Module (Syntax View)

8. Once constructing the queries has been completed, click the Save ALL & Exit
button. caAdapter updates the map file with the updated queries syntaxes.

Generating SDTM Datasets from a Database
This section contains details on generating SDTM datasets from a database based on
the mapping completed in the previous sections

1. Select File > New > RDS Mapping and Transformation Service > RDS Text File
as illustrated in Figure 6-26.

Figure 6-26 Launching the SDTM File Generation Process

2. The Create RDS Text File window opens (Figure 6-27), which allows specifying the
.map file.

Figure 6-27 Selecting the .map file

 Chapter 6 Regulatory Data Services Module

 83

3. Provide caAdapter with the password to the connection profile to access the
database and with the directory where caAdapter can store SDTM datasets. See
Figure 6-28 and Figure 6-29.

Figure 6-28 Entering Database Password

Figure 6-29 Specifying Directory to Store Generated SDTM Datasets

4. Specify whether the SDTM datasets generated contains fixed length columns or not
by selecting Tool > Preferences. In the RDMS Module tab select Fixed Length and
click OK (Figure 6-30). If this option is selected, and prior to generating SDTM
datasets, a dialog box opens to specify the length of every SDTM column used in the
mapping (Figure 6-31).

Note: caAdapter will pad the fields with trailing spaces when the data is shorter than
the field length specified.

caAdapter 4.0 User’s Guide

84

Figure 6-30 Fixed Length Columns Option

Figure 6-31 Entering Column Lengths

5. Once the transformation is completed, caAdapter creates one file per SDTM domain.
Figure 6-32 shows the SDTM datasets generate in the specified directory in step 3
above.

Figure 6-32 SDTM Datasets

 Chapter 6 Regulatory Data Services Module

 85

 86

Chapter 7 caAdapter Model Mapping Service

This chapter describes how to use caAdapter to facilitate object to database mapping.

Topics in this chapter include:

• Overview on this page
• Using the caAdapter Model Mapping Service on this page
• The Seven Mapping Scenarios on page 94
• User Interface Legend on page 99

Overview
The caAdapter 4.0 Model Mapping Service for the caCORE 3.2 SDK takes advantage of the
caAdapter mapping infrastructure to facilitate object to database mapping. The model
mapping service requires an .xmi file (with full Enterprise Architect [EA] roundtrip capability)
that includes a data model and object model as inputs. The service module loads all models
into the tool. Object to database mapping is done by dragging object model elements and
dropping them onto target data model elements. Once mapping is complete, caAdapter adds
SDK-required values as TaggedValues to the original xmi file (and, for backwards
compatibility, also creates a .map file). After importing the newly tagged xmi file into EA and
exporting an xmi 1.1-compatible file, the caCORE SDK can perform all code generation
tasks.

Using the caAdapter Model Mapping Service
The caAdapter Model Mapping Service provides the following functionalities:

• Parse and load data model and object model from an xmi file

• Drag and drop mapping between an object model and a data model

• Add SDK required tags and tag values into an xmi file

• Generate Hibernate mapping file

The following diagram (Figure 7-1) describes the overall flow of how the caAdapter Model
Mapping Service is integrated with other components. caAdapter users need to first develop
an object model and a data model in EA. An xmi file needs to be exported from EA and then
the caAdapter Model Mapping Service can load the xmi file. caAdapter users will map objects
to tables, and attributes and associations to columns by dragging and dropping. Once
completed, caAdapter can directly generate a set of Hibernate HBM mapping files.
Alternatively, the original xmi file which has caCORE compliant tag values added can be
saved for later use. The tagged xmi file can be reimported into EA to generate an xmi file that
can be used by the caCORE SDK.

The following subsections describe each of these steps in detail.

 Chapter 7 caAdapter Model Mapping Service

 87

Figure 7-1 caAdapter Model Mapping Service Overall Process

Note: While it still supports the .map file, this version of caAdapter does not require it; all
mapping information is now stored in the .xmi file.

Exporting an XMI file from EA

Before beginning to map between an object model and a data model through the caAdapter
Model Mapping Service, an xmi file needs to be generated through EA by following these
steps.

1. Open the .eap file (that contains the object and data models) and right click on
Logical View. Select Import/Export > Export package to XMI file (Figure 7-2).

Figure 7-2 Export XMI file from EA

2. On the Export Package to XMI window, check the Format XMI Output box and the
Enable Full EA Roundtrip box. Specify the output file name of the xmi file and click

caAdapter 4.0 User’s Guide

88

Export. The generated xmi file can be parsed by the caAdapter Model Mapping
Service module (Figure 7-3).

Figure 7-3 Options to export XMI file from EA

Creating an Object Model to Data Model Map Specification

Perform the following steps to create a new map specification.

1. Select File > New > Model Mapping Service > Object Model to Data Model Map
Specification (Figure 7-4) to open a new mapping tab with empty source and
destination panels.

2. Click Open XMI file… to display the Open XMI file … dialog box (Figure 7-5). Select
the XMI file to start mapping an object model to a data model.

Figure 7-4 Creating an Object Model to Data Model Map Specification

 Chapter 7 caAdapter Model Mapping Service

 89

3. After the xmi file is loaded, the object model opens in the left panel, and the data
model displays in the right panel. Start mapping objects and attributes to tables
and columns.

Figure 7-5 Open XMI file

Opening an Existing Object to Database Mapping Specification

Perform the following steps to open an existing map specification.

1. Select File > Open > Object Model to Data Model Map Specification. The Open
Map File dialog box displays.

2. Select either the xmi file or the map specification file and click Open. (For backwards
compatibility, caAdapter 4.0 saves the mappings in the .map file as well as the xmi
file, so either may be used to open the mapping specification).

3. If you select a .map file and the xmi associated with the mapping cannot be found,
the Select xmi file dialog box opens. Browse to the correct xmi file and click Open.

caAdapter 4.0 User’s Guide

90

Basic Mapping

Perform the following steps to create an object to database mapping specification
(dependency mapping, attribute mapping, and association mapping).

1. Select a source element (objects, attributes, or associations) from the Object Model
and drag it to the appropriate target element (tables, columns or foreign keys) in the
Data Model. The cursor indicates whether the source element is, or is not, allowed to
be mapped to the target element (Figure 7-6). Drop the source element on the target
element.

Figure 7-6 Cursor indicates whether mapping is allowed

2. Once a source element is mapped to a target element, a mapping line appears
between them in the mapping panel. Figure 7-7 shows a mapping line between
Amendment in the Object Model, on the left, and Amendment in the Data Model, on
the right.

Figure 7-7 Mapping line between source element and target element

Dependency Mapping (Object to Table)

A dependency mapping is a mapping between an object and a table. Perform the following
steps to create a dependency mapping.

1. Select a source element from the Object Model on the right. The example in Figure
7-8 shows HealthcareSite. Click and drag to HealthcareSite to HEALTHCARE_SITE
in the Data Model.

2. A mapping line between HealthcareSite in the Object Model and
HEALTHCARE_SITE in the Data Model should now be visible. Dependency

 Chapter 7 caAdapter Model Mapping Service

 91

mapping lines are color-coded green.

Figure 7-8 Dependency Mapping

Attribute Mapping

An attribute mapping is a mapping between an attribute in the object model and a
column in the data model. (Before any attribute mapping can be performed, users have
to complete dependency mapping first) Perform the following steps to create an attribute
mapping.

1. The example in Figure 7-9 shows the attribute id (A) for the class HealthcareSite.
Select 'id (A)' in the Object Model and drag it to ID in the Data Model.

2. A mapping line should be visible between the attribute and column. Attribute
mapping lines are color-coded blue. Repeat this for 'name (A)' to NAME.

Figure 7-9 Attribute Mapping

3. If the object has not already been mapped to the table, an attempt to map the
object’s attributes to the table’s columns will result in an error message (Figure 7-10).

Figure 7-10 Attribute Mapping error message

caAdapter 4.0 User’s Guide

92

Association Mapping

An association mapping is a mapping between one end of an association listed under an
object in the object model and a foreign key column in a table in the data model. Perform the
following steps to create an association mapping.

1. First create a dependency mapping between the object model and the data model.
For example, in Figure 7-11 the green line shows a dependency between
'HealthcareSite' and ‘HEALTHCARE_SITE’.

2. Map 'id (A)' to ID and 'name (A)' to NAME.
3. Click and drag 'address (1 to 1)' to ADDRESS_ID. When complete, the final result

should look like Figure 7.11. Association mapping lines are color-coded red.

Figure 7-11 Association Mapping

Deleting Mapping Lines

Perform the following steps to delete a mapping line.

1. Select the mapping line by left clicking on it in the mapping panel. The line is
highlighted.

2. Right click on the highlighted mapping line and select Delete (Figure 7.12). The line
is removed from the mapping panel.

Figure 7-12 Deleting Mapping Lines

Validating Mapping Specifications

Validating a mapping specification identifies any pertinent business rules that have been
violated and indicates any changes that need to be made. Perform the following steps to
validate the object to database mapping specification.

1. Click the Validate button (top of Figure 7.13). The following message displays:
“Validation process completed successfully with no message received”. If there are

 Chapter 7 caAdapter Model Mapping Service

 93

errors in the validation process, the following message displays: “Validation process
completed but received <some number> ERRORs”.

2. If there are errors the Message Dialog (bottom of Figure 7.13) window opens and
allows examination of any messages, errors, or warnings. Error messages may
identify what actions to perform to correct errors, while warnings and informational
messages may require no changes at all. It is recommended that mappings be re-
validated after changes are made.

Figure 7-13 Validate Mapping Specification

Saving Mapping Specifications

To save a mapping specification, select File > Save. caAdapter saves the mappings to the
xmi file and to the .map file (for backward compatibility). The Save Complete dialog displays
when completed.

The xmi file created can be used by the caCORE SDK for code generation purposes.

Generating Hibernate Mappings

An alternative to creating caCORE SDK APIs is to generate Hibernate files and use
those files in an application to access data from a database. Perform the following steps
to generate Hibernate files from the current object to database mapping.

1. Click the Generate HBM Files button; the Open dialog box displays (Figure 7-14).

caAdapter 4.0 User’s Guide

94

2. Select a directory to save the HBM file(s) and click Open.
3. The HBM files are saved to the directory specified.
.

Figure 7-14 Generate HBM Files

The Seven Mapping Scenarios
Before performing any of the following mapping scenarios, all dependency mappings
between objects and tables have to be completed.

One‐to‐One Bi‐Directional

To map one-to-one bi-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (Protocol and Amendment) in Figure
7-20, drag the association (Amendment.protocol (1 to 1)) and drop it onto the foreign key
(PROTOCOL_ID) of the corresponding table (AMENDMENT). For one-to-one bi-
directional mapping, only one end of the relationship needs to be mapped; the other end
(Protocol.amendment (1 to 1)) does not need to be mapped.

 Chapter 7 caAdapter Model Mapping Service

 95

Figure 7-15 One‐to‐One Bi‐Directional Mapping

One‐to‐One Uni‐Directional

To map one-to-one uni-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (HealthcareSite and Address) in Figure
7-16, drag the association (HealthcareSite.address (1 to 1)) and drop it onto the foreign
key (ADDRESS_ID) of the corresponding table (HEALTHCARE_SITE).

Figure 7-16 One‐to‐One Uni‐Directional Mapping

One‐to‐Many Bi‐Directional

To map one-to-many bi-directional relationships, the rule is to map the association from the

caAdapter 4.0 User’s Guide

96

object whose corresponding table has the foreign key (source) to the foreign key in the
corresponding table (target). In the example (AdverseEvent and AdverseEventTherapy) in
Figure 7-17, drag the association (AdverseEventTherapy.adverseEvent (1 to Many)) and
drop it onto the foreign key (ADVERSE_EVENT_ID) of the corresponding table
(ADVERSE_EVENT_THERAPTY). For one-to-many bi-directional mapping, the other end of
the association will be rendered by a dark blue element, and is not required to be mapped
through caAdapter.

Figure 7-17 One‐to‐Many Bi‐Directional Mapping

One‐to‐Many Uni‐Directional

To map one-to-many uni-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (CancerStage and Diagnosis) in Figure
7-18, drag the association (CancerStage.diagnosis (1 to Many)) and drop it onto the foreign
key (DIAGNOSIS_ID) of the corresponding table (CANCER_STAGE). For one-to-many uni-
directional mapping, the other end of the association will be rendered by a dark blue element,
and is not required to be mapped through caAdapter. The pink color-coded association end is
added by the system to support mapping and should be mapped, but the dark blue
association end should not be mapped.

Figure 7-18 One‐to‐Many Uni‐Directional Mapping

 Chapter 7 caAdapter Model Mapping Service

 97

Many‐to‐One Uni‐Directional

To map many-to-one uni-directional relationships, the rule is to map the association from
the object whose corresponding table has the foreign key (source) to the foreign key in
the corresponding table (target). In the example (HistopathologyGrade and Histopathology)
in Figure 7-19, mapping is done in a similar fashion as the one-to-many uni-directional
relationship. Drag the association (HistopathologyGrade.histopathCollection (1 to Many)) and
drop it onto the foreign key (HISTOPATHOLOGY_ID) of the corresponding table
(HISTOPATHOLOGY_GRADE).

Figure 7-19 Many‐to‐One Uni‐Directional Mapping

Many‐to‐Many Bi‐Directional

To map a many-to-many bi-directional association, first identify an intersection table. In
the example in Figure 7-20, STUDY_SITE_PARTICIPANT is the intersection table
(typically the name of the intersection table is a concatenation of the two tables that
correspond to the two objects). Then, drag both ends of the associations and drop them
onto the two corresponding columns in the mapping table.

Figure 7-20 Many‐to‐Many Bi‐Directional Mapping

caAdapter 4.0 User’s Guide

98

Many‐to‐Many Uni‐Directional

To map a many-to-many uni-directional association, first identify an intersection table. In
the example in Figure 7-21, ASSESSMENT_OBSERVATION is the intersection table
(typically the name of the intersection table is a concatenation of the two tables that
correspond to the two objects). Then, drag both ends of the associations and drop them
onto the two corresponding columns in the intersection table (just like for a bi-directional
association).

Figure 7-21 Many‐to‐Many Uni‐Directional Mapping

Mapping Inheritance

To map inheritance through the caAdapter Model Mapping Service, following the above
steps to map each child class or attribute to its corresponding table or column, and the
tool will automatically mark inherited attributes as (A – Derived). Those attributes do not
need to be mapped, and during the validation, an information level message is
displayed.

Figure 7-22 Mapping with Inheritance

 Chapter 7 caAdapter Model Mapping Service

 99

User Interface Legend

Node Details

• (A) – The node is an attribute

• (A – Derived) –The node is an inherited attribute

• (1 to 1) – The node is a one-to-one association

• (1 to Many) – The node is a-one-to many association

• (Many to 1) – The node is a many-to-one association

• (Many to Many) – The node is a many-to-many association

Mapping Line Colors

• Green – Dependency Mapping.

• Blue – Attribute Mapping.

• Red – Association Mapping.

Figure 7-23 Mapping Line Colors

The following icons are used to indicate various element tagging as discussed in the
next section:

Lazy - Eager -

CLOB - Discriminator -

Primary Key -

Additional Module Features

To tag a column in the data model as Lazy-Load, CLOB, or Discriminator, click on the
column and select the appropriate tag (Figure 7-24).

Note: This version of caAdapter supports mapping more than one object to a single
table. However, at least one column in that table must be tagged as a “Discriminator”.

caAdapter 4.0 User’s Guide

100

Figure 7-24 Tagging a Column with Lazy, CLOB, or Discriminator

Only one attribute can be tagged in an object as a Primary Key. Right click on the
attribute and select Make Primary Key. If no primary key was specified, caCORE SDK
will assume that the field with the name “id” is the primary key (Figure 7-25).

Figure 7-25 Designating a Primary Key for an Object

Specify the prefix to use for Object or Data Model elements using the Tools >
Preferences menu option (Figure 7-26).

Figure 7-26 Designating Prefixes

The following table show various tags implemented by caAdapter.

 Chapter 7 caAdapter Model Mapping Service

 101

Tag Name Tag Value Location

id-attribute Fully qualified class name Class attribute

mapped-attributes Fully qualified attribute name Table column

implements-
association

Fully qualified association name Table column (foreign key)

inverse-of Fully qualified association name Table column (foreign key)

discriminator Fully qualified class name (when
used on the column),

Discriminating value (when used on
the class)

Table column (foreign key),

Class

correlation-table Join table name Association

documentation Comments on the class or attribute Class or Attribute of class

description Comments on the class or attribute Class or Attribute of class

Lazy-load Yes/No Association

Type CLOB Table column.
Corresponding class
attribute must be String
type)

Table 7-1 caAdapter Implemented Tags

 102

Chapter 8 Using Functions in Mapping

This chapter describes the different functions provided by caAdapter.

Topics in this chapter include:

• Functions Provided by caAdapter on this page
• Function Specifications on page 104
• Adding Functions to the Function Library on page 114

Functions Provided by caAdapter
caAdapter provides a variety of basic functions as part of the initial installation. These
functions may be used in any mapping where the function panel is available. There are five
groups of functions:

• constant – There is one function in this group that allows the user to define a value
that can be used as input with other functions

• date – There is one function in this group that allows the user to convert any date
format into the HL7 v3 required date format.

• math – Five basic math functions are provided in this group.

• string – Ten commonly used functions in this group allows users to do basic data
manipulation.

• vocabulary – These functions were new in the 4.0 release of caAdapter and allow a
user to translate values in incoming data into a different value in the outgoing format.

The following table provides a simple overview of the functions that reside in each of these
groups.

Function
Group Name

Function Name Function Description

constant Constant Allows the user to define a string or integer for use
as an input value to another function or to a target
field.

Date changeFormat Requires the user to define the incoming date
format (using either a constant function or a source
field mapping) and the date field to be converted.
Only transforms to the HL7 v3 required date
format, but does handle varying levels of specificity
(e.g. with or without time).

math Addition Takes in two values and provides the sum.

math Subtract Takes in two values and provides the difference.

math Multiply Takes in two values and provides the product.

math Divide Takes in two values and provides the quotient.

 Chapter 8 Using Functions in Mapping

 103

Function
Group Name

Function Name Function Description

math Round Takes in two values, a value to be rounded, and
the digit number to which to round.

string Concatenate Takes in two strings and provides a single value
have the first string appended with the second.

string Split Takes in a string and a position number and breaks
the string into two strings at the given position.

string Length Takes in a single string and provides the number of
characters present.

string Substring Takes in a string and a starting and ending
position, returning a portion of the string.

string Trim Takes in a single string and provides the same
basic value with leading and trailing blanks
removed.

string Replace Takes in three strings, one containing the value to
be operated on, one containing the “from”
characters to search for, and the last containing the
“to” characters to substitute, producing a single
string with “from” characters substituted with “to”
characters.

string Instring Takes in a string on which to operate and a pattern
to search for, returning the position within the string
where the pattern is found, or 0.

string Upper Takes in a single string and returns the same string
only with all alphabetic characters in uppercase.

string Lower Takes in a single string and returns the same string
only with all alphabetic characters in lowercase.

string Initcap Takes in a single string and returns the same string
only with all alphabetic characters in lowercase
except the first which is in uppercase.

vocabulary translateValue Requires the user to select either a vocabulary
mapping file (.vom) or a URL to use as the basis of
the conversion. Also may require a domain to be
specified if the .vom file has more than one
translation set in it. Takes in a single string and
returns a converted string based on the “from” and
“to” values and business rules defined in the
vocabulary mapping file or the URL-based function.

caAdapter 4.0 User’s Guide

104

Function
Group Name

Function Name Function Description

vocabulary translateInverseValue Behaves the same way as the translateValue
function only in reverse, matching the input value
to the “to” side of the vocabulary mappings and
returning the value from the “from” side.

Table 8-1 caAdapter Functions

Function Specifications
There are two function-related specifications. The first one describes the function groups
and functions, and the inputs, outputs and implementation for each function. The second
one describes the vocabulary mappings used by the vocabulary functions.

Function Specification Overview

The function specification is used as a guide for function objects to read the function
specification and determine what objects to call to execute a function (for example,
concatenation). The function specification also stores data points for rendering by a
function graphical representation within the mapping tool. It uses the following types of
nested elements:

<function>

<group name>

<function name>

<inputs>

<datapoint>

<outputs>

Following is an example of a function specification file (core.fls). See the {home
directory}\map\functions directory for the entire file.

<?xml version="1.0"?>
<functions>
 <group name="constant" xmlPath="constant">
 <function name="constant"
xmlPath="constant.constant">
 <outputs>
 <datapoint pos="0" name="constant"
datatype="string" xmlPath="constant.constant.outputs.0"/>

 </outputs>
 </function>
 </group>
 <group name="date" xmlPath="date">
 <function name="changeFormat"

 Chapter 8 Using Functions in Mapping

 105

xmlPath="date.changeFormat">
 <inputs>
 <datapoint pos="0" name="fromFormat"
datatype="string" xmlPath="date.changeFormat.inputs.0"/>

 <datapoint pos="1" name="dateIn"
datatype="string" xmlPath="date.changeFormat.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dateOut"
datatype="string" xmlPath="date.changeFormat.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.DateFunction"
method="changeFormat"/>

 </function>
 <function name="countDays" xmlPath="date.countDays">
 <inputs>
 <datapoint pos="0" name="fromDate"
datatype="string" xmlPath="date.countDays.inputs.0"/>

 <datapoint pos="1" name="toDate"
datatype="string" xmlPath="date.countDays.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="dayNumber"
datatype="int" xmlPath="date.countDays.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.DateFunction"
method="countDays"/>

 </function>
 </group>
 <group name="math" xmlPath="math">
 <function name="Addition" xmlPath="math.Addition">
 <inputs>
 <datapoint pos="0" name="Value1"
datatype="double" xmlPath="math.Addition.inputs.0"/>
 <datapoint pos="1" name="Value2"
datatype="double" xmlPath="math.Addition.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Sum"
datatype="double" xmlPath="math.Addition.outputs.0"/>

caAdapter 4.0 User’s Guide

106

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.MathFunction"
method="add"/>
 </function>
 <function name="Subtract" xmlPath="math.Subtract">
 <inputs>
 <datapoint pos="0" name="Value1"
datatype="double" xmlPath="math.Subtract.inputs.0"/>
 <datapoint pos="1" name="Value2"
datatype="double" xmlPath="math.Subtract.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Difference"
datatype="double" xmlPath="math.Subtract.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.MathFunction"
method="subtract"/>

 </function>
 <function name="Multiply" xmlPath="math.Multiply">
 <inputs>
 <datapoint pos="0" name="Value1"
datatype="double" xmlPath="math.Multiply.inputs.0"/>
 <datapoint pos="1" name="Value2"
datatype="double" xmlPath="math.Multiply.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Product"
datatype="double" xmlPath="math.Multiply.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.MathFunction"
method="multiply"/>

 </function>
 <function name="Divide" xmlPath="math.Divide">
 <inputs>
 <datapoint pos="0" name="Dividend"
datatype="double" xmlPath="math.Divide.inputs.0"/>
 <datapoint pos="1" name="Divisor"
datatype="double" xmlPath="math.Divide.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Quotient"

 Chapter 8 Using Functions in Mapping

 107

datatype="double" xmlPath="math.Divide.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.MathFunction"
method="divide"/>

 </function>
 <function name="Round" xmlPath="math.Round">
 <inputs>
 <datapoint pos="0" name="Input"
datatype="double" xmlPath="math.Round.inputs.0"/>
 <datapoint pos="1" name="roundDigit" datatype="int"
xmlPath="math.Round.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Output"
datatype="double" xmlPath="math.Round.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.MathFunction"
method="round"/>
 </function>
 </group>
 <group name="string" xmlPath="string">
 <function name="Concatenate"
xmlPath="string.Concatenate">
 <inputs>
 <datapoint pos="0" name="String1"
datatype="string" xmlPath="string.Concatenate.inputs.0"/>

 <datapoint pos="1" name="String2"
datatype="string" xmlPath="string.Concatenate.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Concatenate.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="concat"/>

 </function>
 <function name="Split" xmlPath="string.Split">
 <inputs>
 <datapoint pos="0" name="String1"
datatype="string" xmlPath="string.Split.inputs.0"/>

caAdapter 4.0 User’s Guide

108

 <datapoint pos="1" name="Pos"
datatype="int" xmlPath="string.Split.inputs.1"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result1"
datatype="string" xmlPath="string.Split.outputs.0"/>
 <datapoint pos="1" name="Result2"
datatype="string" xmlPath="string.Split.outputs.1"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="split"/>

 </function>
 <function name="Length" xmlPath="string.Length">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Length.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Length"
datatype="int" xmlPath="string.Length.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="length"/>

 </function>
 <function name="Substring"
xmlPath="string.Substring">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Substring.inputs.0"/>

 <datapoint pos="1" name="StartPos"
datatype="int" xmlPath="string.Substring.inputs.1"/>
 <datapoint pos="2" name="EndPos"
datatype="int" xmlPath="string.Substring.inputs.2"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Substring.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="substring"/>

 Chapter 8 Using Functions in Mapping

 109

 </function>
 <!-- function name="Trim" xmlPath="string.Trim">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Trim.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Trim.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="trim"/>

 </function -->
 <function name="Replace" xmlPath="string.Replace">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Replace.inputs.0"/>
 <datapoint pos="1" name="FromStr"
datatype="string" xmlPath="string.Replace.inputs.1"/>
 <datapoint pos="2" name="ToStr" datatype="string"
xmlPath="string.Replace.inputs.2"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Replace.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="replace"/>

 </function>
 <function name="Instring" xmlPath="string.Instring">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Instring.inputs.0"/>
 <datapoint pos="1" name="Pattern"
datatype="string" xmlPath="string.Instring.inputs.1"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="int" xmlPath="string.Instring.outputs.1"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"

caAdapter 4.0 User’s Guide

110

method="instring"/>

 </function>
 <function name="Upper" xmlPath="string.Upper">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Upper.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Upper.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="upper"/>

 </function>
 <function name="Lower" xmlPath="string.Lower">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Lower.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Lower.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="lower"/>

 </function>
 <function name="Initcap" xmlPath="string.Initcap">
 <inputs>
 <datapoint pos="0" name="String"
datatype="string" xmlPath="string.Initcap.inputs.0"/>
 </inputs>
 <outputs>
 <datapoint pos="0" name="Result"
datatype="string" xmlPath="string.Initcap.outputs.0"/>
 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.StringFunction"
method="initcap"/>

 </function>
 </group>
 <group name="vocabulary" xmlPath="vocabulary">

 Chapter 8 Using Functions in Mapping

 111

 <function name="translateValue"
xmlPath="vocabulary.translateValue">
 <inputs>
 <datapoint pos="0" name="dataIn"
datatype="string" xmlPath="vocabulary.translateValue.inputs.0"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dataOut"
datatype="string" xmlPath="vocabulary.translateValue.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.FunctionVocabularyM
apping" method="translateValue"/>

 </function>
 <function name="translateInverseValue"
xmlPath="vocabulary.translateInverseValue">
 <inputs>
 <datapoint pos="0" name="dataIn"
datatype="string"
xmlPath="vocabulary.translateInverseValue.inputs.0"/>

 </inputs>
 <outputs>
 <datapoint pos="0" name="dataOut"
datatype="string"
xmlPath="vocabulary.translateInverseValue.outputs.0"/>

 </outputs>
 <implementation
classname="gov.nih.nci.caadapter.common.function.FunctionVocabularyM
apping" method="inverseTranslateValue"/>

 </function>
 </group>
</functions>

Vocabulary Mapping Specification Overview

The vocabulary mapping specification is used as a guide for translating values from one
vocabulary set to another. It includes one or more vocabulary domain names with associated
translations (source and target values) and a mechanism for handling cases where the
incoming value does not match any of the mapped values.

The vocabulary mapping specification uses the following types of nested elements:

1. <VocabularyMapping>

caAdapter 4.0 User’s Guide

112

2. <comment>

3. <domain>

4. <translation>

5. <source>

6. <target>

7. <elseCase>

8. <inverseElseCase>

The elsecase and inverseElseCase elements can have several types which govern what
happens when an incoming value doesn’t match any of the maps. Some of the flavors
also include a value that the mapping can define for that case. The types include the
following:

Else Case Type Description Includes a Value?

keepValue Returns the incoming value without
any change

No

null Returns a null No

assignValue Returns the value provided in the
value attribute

Yes

makeAnError Returns an error status to cause
caAdapter to report a vocabulary
mapping error

No

Table 8-2 Else Case types

Following is an example of a vocabulary mapping specification file (using the designated
file extension, .vom). See the {home directory}\workingspace\examples\V2V3
Mapping Examples\ADT_A03_to_402003 file for a soft copy of this code and see
the {home directory}\etc functions file for the vom.xsd file that governs the
structure of the .vom file.

<?xml version="1.0" encoding="UTF-8"?>

<VocabularyMapping name="Test_Example01>

 <comment>

 This vom file was made for test instance of V2-V3 mapping

 which is between ADT^A03 and PRPA_MT402003

 </comment>

 <domain name="AdministrativeGender">

 <comment>

 Source:HL70001(Administrative Sex),

Target:2.16.840.1.113883.11.1(AdministrativeGender)

 Chapter 8 Using Functions in Mapping

 113

 </comment>

 <translation name="Male">

 <source value="M" remark="Male"/>

 <target value="M" remark="Male"/>

 </translation>

 <translation name="Female">

 <source value="F" remark="Female"/>

 <target value="F" remark="Female"/>

 </translation>

 <translation name="unknown1">

 <source value="U" remark="Unknown"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown2">

 <source value="O" remark="Other"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown3">

 <source value="A" remark="Ambiguous"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <translation name="unknown4">

 <source value="N" remark="Not applicable"/>

 <target value="UN" remark="Undifferentiated"/>

 </translation>

 <elseCase type="keepValue"/>

 <inverseElseCase type="assignValue" value="UN"/>

 </domain>

 <domain name="DiseaseCodingSystemOID">

caAdapter 4.0 User’s Guide

114

 <translation name="ICD-10">

 <source value="I10"/>

 <target value="2.16.840.1.113883.6.3"/>

 </translation>

 <translation name="ICD-9CM">

 <source value="I9C"/>

 <target value="2.16.840.1.113883.6.2"/>

 </translation>

 <translation name="SNOMED">

 <source value="SNM"/>

 <target value="2.16.840.1.113883.6.5"/>

 </translation>

 <elseCase type="keepValue"/>

 <inverseElseCase type="keepValue"/>

 </domain>

</VocabularyMapping>

Adding Functions to the Function Library
The function library provides a list of system defined functions that facilitate the data
transformation requirement. Functions are grouped by its functional categories (for example,
math group, string group, etc). It is required that each group has to have a unique name
across the whole function library, but the name of individual function is only required to be
unique within its defined group.

The design of function library encompasses some extensibility on the support of user-
customized functions in the definition of the function library's xml schema. In this version of
release, no GUI utility is available to allow you to register custom function libraries to the
mapping tool. However, advanced software engineers can update the function library
definition file, named core.fls, located in the {home directory}\etc directory, to
register or replace your own function implementations. After registration, the configuration
engineer needs to make sure the corresponding customized Java library is available on the
classpath, so that next time the mapping tool starts, it can secure the needed Java
implementation classes during the generation of HL7 v3 messages.

 Chapter 8 Using Functions in Mapping

 115

 116

Chapter 9 Using the caAdapter APIs

This chapter describes the set of primary caAdapter APIs.

Topics in this chapter include:

• caAdapter Directory Structure on this page
• caAdapter APIs on page 117
• caAdapter API Error Logs on page 120

caAdapter Directory Structure
Depending on the type of distribution of caAdapter, the directory structure will vary.
Table 9-1contains the directories under your {home directory}for the binary
distribution.

Directory Contents

conf Component level configuration

docs Javadocs and other useful information

lib Java libraries and dependencies; and the MIF.zip file

schema HL7 v3 Schema files

workingspace Default directory where you can save project files. It contains
log files and HL7 v3 xml instances. It also contains an
examples directory with example data (see Appendix A
caAdapter Example Data).

Table 9-1 Directory Structure for caAdapter (Binary Distribution)

Table 9-2 contains the directories under your {home directory} for source
distribution.

Directory Contents

components Different caAdapter components. Each component has its own
build script, required libraries, and configurations. caAdapter
has common, hl7, RDS, UI, and web service components.

conf Component level configuration

docs Javadocs and other useful information

 Chapter 9 Using the caAdapter APIs

 117

Directory Contents

lib Java libraries and dependencies; and the MIF.zip file

etc Important supplementary files

workingspace Default directory where you can save project files. It contains
log files and HL7 v3 xml instances. It also contains an
examples directory with example data (see Appendix A
caAdapter Example Data).

Table 9-2 Directory Structure for caAdapter (Source Distribution)

caAdapter APIs
There are four primary modules in the set of caAdapter APIs.

• Meta Data Loader

• Transformation Service

• HL7 v2 to HL v3 Transformation

• Vocabulary and MIF schema Validation

The following sections provide a description of each.

Meta Data Loader

HL7 provides the following format for specifying message metadata (structure, format,
and constraints):

• Model Interchange Format (MIF. MIF is xml based. When the message is being parsed,
the Meta Data Loader drives how the internal HL7 message instance is built.

Note: The Meta Data Loader supports both format types: a java object of the serialized MIF
file, an xml based file. The following example demonstrates how to use the Meta Data
Loader.
1. Load Serialized MIF file from resource.zip - located at lib directory.

InputStream is = this.getClass()

.getResourceAsStream("/mif/" + mifFileName);

 ObjectInputStream ois = new ObjectInputStream(is);

 MIFClass mifClass = (MIFClass)ois.readObject();

 ois.close();

 is.close();

2. Load Serialized MIF file from an xml file.

caAdapter 4.0 User’s Guide

118

 XmlToMIFImporter xmlToMIFImporter = new XmlToMIFImporter();

 MIFClass mifClass = xmlToMIFImporter

.importMifFromXml(new File(filepath));

Transformation Service

The transformation service reads the mapping file and converts a compliant source file
into a series of HL7 v3 xml instances. The mapping file contains a reference to the
source specification, target specification, function library specification, and mapping
information.

The transformation service classes are located in the
gov.nih.nci.caadapter.hl7.transformation package.

The following example demonstrates how to use the transformation service. Given the
CSV source file and the mapping file, the TransformationService class transforms
the CSV file into the MapGenerateResult class, which contains the generated HL7 v3
message text and the corresponding validation results.

TransformationService ts = new TransformationService

("data/Transformation/COCT_MT010000_MAP1-1.map",

 "data/Transformation/COCT_MT01000_Person.CSV");

List<XMLElement> xmlElements = ts.process();

 if (xmlElements==null)

{

 //if failed in processing the source data

 //file,it returns error messages

 ValidatorResults rs=ts.getValidatorResults();

 String errorMsg= rs.getAllMessages().toString();

 }

 else {

//return a list of generated messages

for(XMLElement rootElement: xmlElements) {

 String hl7MessageXml= rootElement. toXML().

 toString();

 }

HL7 v2 to HL7 V3 Transformation

The first step in mapping an HL7 v2 to an HL7 v3 is to create a CSV specification file, or

 Chapter 9 Using the caAdapter APIs

 119

an scs file, equivalent to the HL7 v2 message structure. The user can then use the
caAdapter GUI to transform the HL7 v2 message into a CSV file based on the CSV
specification file created in this step. The second step is to map the elements of the CSV
file to the appropriate HL7 v3 message. These steps have been described in previous
chapters.

Alternatively, the user may use caAdapter’s APIs to automatically transform the HL7 v2
data to create the corresponding CSV file (reference the second part of the first step
above).

Following is a sample code that shows how to accomplish this task.

V2Converter con = new V2Converter(FileUtil.getV2DataDirPath());

con.convertV2ToCSV(hl7FileName, csvFileName, scsFileName);

if (!con.isCSVValid())

 List<String> errList = con.getValidationMessages();

This sample code must be caught by the HL7MessageTreeException.

Vocabulary and MIF Schema Validation

Vocabulary validation provides the ability to validate HL7 structural attributes against the
HL7 published vocabulary. MIF schema validation validates an xml format HL7 message
against a MIF schema file provided by the user (calling program).

The following example demonstrates how to invoke the two validation processes:
ValidatorResults validatorsToShow=new ValidatorResults();
String level=CaadapterUtil.readPrefParams(
Config.CAADAPTER_COMPONENT_HL7_TRANSFORMATION_VALIDATION_LEVEL);
//always process the structure validation ... level_0
validatorsToShow.addValidatorResults(xmlMsg.getValidatorResults());
if(level!=null&&! level.equals(
CaAdapterPref.VALIDATION_PERFORMANCE_LEVLE_0))
{
 //add vocabulary validation ... level_1
 validatorsToShow.addValidatorResults(xmlMsg.validate());
 if(level.equals(CaAdapterPref.VALIDATION_PERFORMANCE_LEVLE_2))
 { //add xsd validation
 try {
String xsdFile= FileUtil.searchMessageTypeSchemaFileName(
xmlMsg.getMessageType(),"xsd");
 HL7V3MessageValidator h7v3Validator=new HL7V3MessageValidator();
 //add xsd validation ... level_2
 validatorsToShow.addValidatorResults(h7v3Validator.validate(xmlMsg.to
XML().toString(), xsdFile);
 } catch (Exception e)
 {
 e.printStackTrace();
 }
}

caAdapter 4.0 User’s Guide

120

caAdapter API Error Logs
Many of the targets provide logging information that is printed to the console and saved to a
file. The log files can be found in the {home directory}\workingspace directory. All
log messages are saved to the file caadapter.log.# where # is the number of the log file
created.

The logging utility is configurable; edit the {home directory}\logging.properties file
to change your logging properties.

 Chapter 9 Using the caAdapter APIs

 121

 123

Chapter 10 caAdapter Web Services Transformation

Module

This chapter contains information on using caAdapter’s Web Services.

Topics in this chapter include:

• Introduction on this page
• Setup Mapping Scenarios Through the Web Portal on page 124
• Programmatic Access to the caAdapter Web Services on page 125

Introduction
A Web service is a software application identified by a URI, whose interface and bindings
are capable of being identified, described and discovered by xml artifacts. The web service
also supports direct interactions with other software applications using xml based messages
via Internet-based protocols (by World Wide Web Consortium).

caAdapter’s CSV to HL7 v3 Message Transformation Service API is a JAVA API and can
only be directly integrated with a JAVA-based application. This web service provides a
powerful mechanism to integrate caAdapter’s CSV to HL7 v3 Transformation Service into a
variety of systems that are developed under different platforms and software environment.

caAdapter 4.0 Web Service Model includes the following two sub-components:

• Web Portal – provides basic mapping scenario management.

• Web Service API – provides CSV to HL7 v3 transformation service.

The Web Portal provide a mechanism to upload all the mapping files including the actual .map
file, CSV specification file, and HL7 v3 specification file. Once uploaded, the files can be used by
subsequent transformation services. This is typically a one time effort.

Figure 10-1 illustrates the Web Service Module architecture.

caAdapter 4.0 User’s Guide

124

Figure 10-1 caAdapter Web Service Module Architecture

Setup Mapping Scenarios Through the Web Portal
This section contains the step-by-step instructions to upload mapping, CSV, and HL7 v3
specification.

1. Open an IE/Firefox browser and enter the following link:
http://caadapter.nci.nih.gov

Figure 10-2 caAdapter Portal

S1.map
S1.scs

S1.h3s

Mapping Scenario1

Sn.map
Sn.scs

Sn.h3s

Mapping Scenario n

… …

transformationService(mappingName, csvString)

***.map
***.scs

***.h3s W
eb U

ser
Interface

W
eb Service

Interface

A
pplication

 Chapter 10 caAdapter Web Services Transformation Module

 125

2. In the “Mapping Scenario Name” field, specify the name for the set of mapping files you
are going to upload, and use this name in the later web services clients.

3. In the “Mapping file” field, specify the name and path to the mapping file, usually with .map
suffix.

4. In the “scs file” field, specify the name and path to the CSV specification file, usually with
.scs suffix.

5. In the “H3S file” field, specify the name and path to the HL7 v3 metadata file, usually with
.h3s suffix.

Once the mapping scenario is created successfully, a confirmation message displays
(Figure 10-3).

Figure 10-3 Confirmation Message

Programmatic Access to the caAdapter Web Services
There are a few ways to access the caAdapter Web Services which will be explained in the
following subsection.

Axis 1.x RPC Style Access to caAdapter Web Services

1. Download Axis 1.x (axis-bin-1_4.zip) from the following URL:
http://www.apache.org/dyn/closer.cgi/ws/axis/1_4

2. Unzip the axis-bin-1_4.zip
3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar

caAdapter 4.0 User’s Guide

126

b. axis-ant.jar
c. commons-discovery-0.2.jar
d. commons-logging-1.0.4.jar
e. jaxrpc.jar
f. log4j-1.2.8.jar
g. saaj.jar
h. wsdl4j-1.5.1.jar

4. Run the following command to generate all the stubs:
java org.apache.axis.wsdl.WSDL2Java
http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationService?wsdl

5. Use the following code to access the caAdapter Web Services
import java.util.*;

import
gov.nih.nci.caadapter.caAdapterWS.ws.caAdapterTransformationService.*;

public class AxisRPCClient {

 public static void main(String[] args) {

 try {

 String csvString = "ORGS,RAD\nORGID,2.1";

 CaAdapterTransformationServiceService service

= new CaAdapterTransformationServiceServiceLocator();

 CaAdapterTransformationService caAdapterService

= service.getcaAdapterTransformationService();

 Object[] res = (Object[])caAdapterService.transformationService(

" My_WS_Scenario",csvString);

 for(int i=0;i<res.length;i++)

 System.out.println((String)res[i]);

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

Axis 1.x DII Style Access to caAdapter Web Services

1. Download Axis 1.x (axis-bin-1_4.zip) from the following URL:
http://www.apache.org/dyn/closer.cgi/ws/axis/1_4

 Chapter 10 caAdapter Web Services Transformation Module

 127

2. Unzip the axis-bin-1_4.zip
3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar
b. axis-ant.jar
c. commons-discovery-0.2.jar
d. commons-logging-1.0.4.jar
e. jaxrpc.jar
f. log4j-1.2.8.jar
g. saaj.jar
h. wsdl4j-1.5.1.jar

4. Use the following code to access the caAdapter web services
import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import org.apache.axis.encoding.XMLType;

import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

import org.apache.axis.utils.Options;

import java.util.*;

public class AxisClient {

 public static void main(String[] args) {

 try {

 String endpointURL = "
http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationServ
ice";

 String methodName = "transformationService";

 String csvString = "ORGS,RAD\nORGID,2.1";

 Service service = new Service();

 Call call = (Call)service.createCall();

 call.setTargetEndpointAddress(new java.net.URL(endpointURL));

 call.setOperationName(methodName);

 call.addParameter("parameter_name",

XMLType.XSD_STRING,

caAdapter 4.0 User’s Guide

128

ParameterMode.IN);

 call.addParameter("csvstringname",

 XMLType.XSD_STRING,

 ParameterMode.IN);

 call.setReturnClass(java.util.ArrayList.class);

 ArrayList res = (ArrayList)call.invoke(

new Object[]{"My_WS_Scenario",csvString});

 System.out.println(res);

 }catch(Exception e) {

 e.printStackTrace();

 }

 }

In the above code, “My_WS_Scenario" is the “Mapping Scenario Name” you used in the
caAdapter Web Service Management Portal. CSV String is the actual data that needs to be
transformed. The result is an xml message of the result HL7 v3 messages.

Axis 2.0 RPC Style Access to caAdapter Web Services

1. Download Axis 2.0 (axis2-1.1.zip) from the following URL: http://ws.apache.org/axis2/
2. Unzip the axis2-1.1.zip
3. Add the following files for the axis-1_4/lib directory to you classpath.

a. axis.jar
b. axis-ant.jar
c. commons-discovery-0.2.jar
d. commons-logging-1.0.4.jar
e. jaxrpc.jar
f. log4j-1.2.8.jar
g. saaj.jar
h. wsdl4j-1.5.1.jar

4. Use the following code to access the caAdapter Web Services
 package swe645;

import java.util.ArrayList;

import javax.xml.namespace.QName;

import org.apache.axis2.AxisFault;

import org.apache.axis2.addressing.EndpointReference;

import org.apache.axis2.client.Options;

 Chapter 10 caAdapter Web Services Transformation Module

 129

import org.apache.axis2.rpc.client.RPCServiceClient;

import org.apache.axiom.om.impl.llom.OMTextImpl;

import org.apache.axiom.om.impl.llom.OMElementImpl

public class AxisClient {

 public static void main(String[] args1) throws AxisFault {

 String csvString = "ORGS,RAD\nORGID,2.1";

 RPCServiceClient serviceClient = new RPCServiceClient();

 Options options = serviceClient.getOptions();

 EndpointReference targetEPR = new EndpointReference("
http://caadapter.nci.nih.gov/caAdapterWS/ws/caAdapterTransformationServ
ice");

 options.setTo(targetEPR);

 // QName of the target method

 QName opAddEntry = new QName("caAdapter", "transformationService");

 Object[] opAddEntryArgs = new Object[] {

"My_WS_Scenario",

csvString };

 Class[] returnTypes = new Class[] { ArrayList.class };

 // Invoking the method

 Object[] res = serviceClient.invokeBlocking(opAddEntry,

 opAddEntryArgs, returnTypes);

 ArrayList resultArrayList = (ArrayList) res[0];

 for(int i=0;i< resultArrayList.size();i++) {

 OMElementImpl omE = (OMElementImpl)resultArrayList.get(i);

 OMTextImpl textOM = (OMTextImpl)omE.getFirstOMChild();

 System.out.println(textOM.getText());

 }

 }

}

caAdapter 4.0 User’s Guide

130

 131

Chapter 11 caAdapter File Types

This chapter includes the different file types and their formats used by caAdapter.

Topics in this chapter include:

• caAdapter File Formats and Locations on this page
• CSV Data File on page 132
• CSV Specification on page 132
• HL7 v3 Specification on page 134
• HL7 v2 Specifications on page 139
• SDTM Data Files on page 142
• SDTM Meta Data Files on page 143
• Function Specification on page 144
• HL7 v3 Message on page 146
• Object to Database Map Specification on page 149

caAdapter File Formats and Locations
caAdapter uses a variety of files in its APIs and mapping tool. Table 11-1 contains the files
and extensions used by caAdapter.

File Type Extension

CSV Specification .scs

HL7 v3 Specification .h3s and .xml

HL7 v2 Message Structure .dat

HL7 v3 DataTypeSpec .dat

HL7 v3 Segment Attribute Table .dat

HL7 v3 Definition Table .dat

Function Library Specification .fls

SDTM Data File .txt

SDTM Metadata File .xml

Map Specification .map

HL7 v3 Message .xml

Table 11-1 File extensions

caAdapter 4.0 User’s Guide

132

Note: Manual editing of those files is not supported and is highly discouraged.

Warning! The map specification has an internal reference to the full path name of the source and
target specification files. This must be accurate in order to process the conversion or to edit a
map specification successfully. Though it is not recommended, the map specification file can be
manually edited to change the file path for the source and target specification if necessary. If you
are sharing map specification files with other users, you must send all three files, the CSV
Specification (.scs), HL7 v3 Specification (.h3s, or .xml), and map specification (.map) and
not just the map specification.

CSV Data File
It is an assumption for this version of the mapping tool that the source data systems provide data
in CSV flat file formats with the following characteristics:

• File contents are organized into multi-line logical records.

• Each line, called a segment, begins with an identifier, called a segment name, and is
terminated by a new-line character.

• Each segment has one or more data items, called fields, which follow the segment name
and terminates by commas (except for the last field on the line that uses the segment
terminator).

• Segments may occur more than once in the same logical record, except for the first, or
root, segment, which always indicates the beginning of a new record.

• Segments are related to one another in a parent-child hierarchy that documents the one-
to-many nature of the association between related data items.

• A CSV file may have one or more logical records. Each of these is terminated by the
beginning of the next record (a new root segment) or the end of file.

• The intention is that each logical record will become one single HL7 v3 xml message
instance.

CSV Specification
CSV specification describes the structure of a CSV instance. In essence, it is a CSV
specification in the same way an XSD is a specification of an xml instance. The CSV
specification is based on common concepts found in EDI, CSV and HL7 v2-related files. To
document this structure, the CSV specification uses an xml format that has three main
elements:

1. <csvMetadata>
2. <segment>
3. <field>

There can only be one root <segment>, but within it there can be any number of dependent
<segment> elements and any number of <field> elements. All <field> elements have a column
number assigned which corresponds to the second, third, etc., column in the CSV file (the first is

 Chapter 11 caAdapter File Types

 133

the segment name which is considered column 1). The field names are informational and are not
used in the mapping file; only the segment name and column number are referenced.

Following is a CSV specification file (090102.scs) example.

<?xml version="1.0" encoding="UTF-8"?>

<csvMetadata xmlPath="csvMetaData" version="1.2">

 <segment name="ORGS" xmlPath="ORGS" cardinality="1..1">

 <segment name="ORGID" xmlPath="ORGS.ORGID" cardinality="0..*">

 <field column="1" name="Root" datatype="String"
xmlPath="ORGS.ORGID.Root"/>

 <field column="2" name="Extension" datatype="String"
xmlPath="ORGS.ORGID.Extension"/>

 </segment>

 <segment name="ORGNM" xmlPath="ORGS.ORGNM" cardinality="0..*">

 <field column="1" name="Name" datatype="String"
xmlPath="ORGS.ORGNM.Name"/>

 </segment>

 <segment name="ORGAD" xmlPath="ORGS.ORGAD" cardinality="0..*">

 <field column="1" name="Street_1" datatype="String"
xmlPath="ORGS.ORGAD.Street_1"/>

 <field column="2" name="Street_2" datatype="String"
xmlPath="ORGS.ORGAD.Street_2"/>

 <field column="3" name="City" datatype="String"
xmlPath="ORGS.ORGAD.City"/>

 <field column="4" name="State" datatype="String"
xmlPath="ORGS.ORGAD.State"/>

 <field column="5" name="Zip_Code" datatype="String"
xmlPath="ORGS.ORGAD.Zip_Code"/>

 </segment>

 <segment name="PERSNM" xmlPath="ORGS.PERSNM" cardinality="0..*">

 <field column="1" name="First_Name" datatype="String"
xmlPath="ORGS.PERSNM.First_Name"/>

 <field column="2" name="Last_Name" datatype="String"
xmlPath="ORGS.PERSNM.Last_Name"/>

 <field column="3" name="Middle_Initial" datatype="String"
xmlPath="ORGS.PERSNM.Middle_Initial"/>

caAdapter 4.0 User’s Guide

134

 <field column="4" name="Job_Code" datatype="String"
xmlPath="ORGS.PERSNM.Job_Code"/>

 </segment>

 <segment name="PERSID" xmlPath="ORGS.PERSID" cardinality="0..*">

 <field column="1" name="Root" datatype="String"
xmlPath="ORGS.PERSID.Root"/>

 <field column="2" name="Extension" datatype="String"
xmlPath="ORGS.PERSID.Extension"/>

 </segment>

 <segment name="PERSAD" xmlPath="ORGS.PERSAD" cardinality="0..*">

 <field column="1" name="Street_1" datatype="String"
xmlPath="ORGS.PERSAD.Street_1"/>

 <field column="2" name="Street_2" datatype="String"
xmlPath="ORGS.PERSAD.Street_2"/>

 <field column="3" name="City" datatype="String"
xmlPath="ORGS.PERSAD.City"/>

 <field column="4" name="State" datatype="String"
xmlPath="ORGS.PERSAD.State"/>

 <field column="5" name="Zip_Code" datatype="String"
xmlPath="ORGS.PERSAD.Zip_Code"/>

 </segment>

 <field column="1" name="ORG_CODE" datatype="String"
xmlPath="ORGS.ORG_CODE"/>

 </segment>

</csvMetadata>

HL7 v3 Specifications
The HL7 v3 specification, used to define the HL7 v3 metadata information, is based largely
on the MIF for the target HL7 v3 message. An HL7 V3 specification may be saved either as
a binary .h3s file or as an .xml file. The .h3s file is not readable. The .xml file uses four main
types of nested elements:

• < class>

• < association>

• <attribute>

• < type>

• < dataField>

Following is part of an HL7 v3 specification file (150003.h3s) example. See the {home

 Chapter 11 caAdapter File Types

 135

directory}\workingspace\examples\150003 for the entire file.

<class name="ContactParty" isEnabled="true" title="MIF Clone
Properties" referenceName="" sortKey="">

 <packageLocation />

 <attribute name="classCode" type="CS" defaultValue="CON"
isEnabled="true" title="MIF Attribute Properties" mnemonic="CON"
sortKey="1" minimumMultiplicity="1" isStrutural="true"
parentXmlPath="Organization.contactParty00" maximumMultiplicity="1"
isMandatory="true" conformance="R" dDefaultValueProperty="CON"
dDomainNameOidProperty="RoleClassContact (2.16.840.1.113883.11.12205)"
codingStrength="CNE" multiplicityIndex="0" minimumSupportedLength="0"
domainName="RoleClassContact" />

 <attribute name="id" type="II" isEnabled="true" title="MIF Attribute
Properties" sortKey="2" minimumMultiplicity="0"
parentXmlPath="Organization.contactParty00" maximumMultiplicity="-1"
multiplicityIndex="0" minimumSupportedLength="0">

 <type name="II" isEnabled="true" parents="ANY">

 <dataField name="nullFlavor" type="NullFlavor" max="-2"
isValid="true" title="MIF Data Field Properties" isSimple="true"
parentXmlPath="Organization.contactParty00.id00" min="-2"
isOptional="true" isAttribute="true" />

 <dataField name="assigningAuthorityName" type="st" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isSimple="true" parentXmlPath="Organization.contactParty00.id00" min="-
2" isOptional="true" isAttribute="true" />

 </type>

 </attribute>

 <attribute name="addr" type="AD" isEnabled="true" title="MIF
Attribute Properties" sortKey="4" minimumMultiplicity="0"
parentXmlPath="Organization.contactParty00" maximumMultiplicity="-1"
multiplicityIndex="0" minimumSupportedLength="0">

 <type name="AD" isEnabled="true" parents="ANY">

 <dataField name="direction" type="adxp.direction" max="-2"
isValid="true" title="MIF Data Field Properties" min="-2" />

caAdapter 4.0 User’s Guide

136

 <dataField name="city" type="adxp.city" max="-2" isValid="true"
isEnabled="true" title="MIF Data Field Properties"
isOptionChosen="true"
parentXmlPath="Organization.contactParty00.addr00" min="-2">

 <type name="adxp.city" isEnabled="true" parents="ADXP">

 <dataField name="reference" type="TEL" max="0" title="MIF Data
Field Properties" min="0" />

 <dataField name="mediaType" type="cs" max="-2" isValid="true"
isEnabled="true" title="MIF Data Field Properties" isSimple="true"
parentXmlPath="Organization.contactParty00.addr00.city" min="-2"
isAttribute="true" />

 </type>

 </dataField>

 <dataField name="streetNameBase" type="adxp.streetNameBase"
max="-2" isValid="true" title="MIF Data Field Properties" min="-2" />

 <dataField name="precinct" type="adxp.precinct" max="-2"
isValid="true" title="MIF Data Field Properties" min="-2" />

 <dataField name="unitType" type="adxp.unitType" max="-2"
isValid="true" title="MIF Data Field Properties" min="-2" />

 </attribute>

 <association name="contactPerson" isEnabled="true" title="MIF
Association Properties" sortKey="1" minimumMultiplicity="0"
isOptionChosen="true" parentXmlPath="Organization.contactParty00"
maximumMultiplicity="1" multiplicityIndex="0">

 <class name="Person" isEnabled="true" title="MIF Clone
Properties" referenceName="" sortKey="">

 <packageLocation />

 <attribute name="classCode" type="CS" isEnabled="true"
title="MIF Attribute Properties" mnemonic="PSN" sortKey="1"
minimumMultiplicity="1" isStrutural="true"
parentXmlPath="Organization.contactParty00.contactPerson"
maximumMultiplicity="1" isMandatory="true" conformance="R"
dDefaultValueProperty="PSN" dDomainNameOidProperty="EntityClass
(2.16.840.1.113883.11.10882)" codingStrength="CNE"

 Chapter 11 caAdapter File Types

 137

multiplicityIndex="0" fixedValue="PSN" minimumSupportedLength="0"
domainName="EntityClass" />

 <attribute name="determinerCode" type="CS" isEnabled="true"
title="MIF Attribute Properties" mnemonic="INSTANCE" sortKey="2"
minimumMultiplicity="1" isStrutural="true"
parentXmlPath="Organization.contactParty00.contactPerson"
maximumMultiplicity="1" isMandatory="true" conformance="R"
dDefaultValueProperty="INSTANCE"
dDomainNameOidProperty="EntityDeterminer (2.16.840.1.113883.11.10878)"
codingStrength="CNE" multiplicityIndex="0" fixedValue="INSTANCE"
minimumSupportedLength="0" domainName="EntityDeterminer" />

 <attribute name="name" type="EN" isEnabled="true" title="MIF
Attribute Properties" sortKey="3" minimumMultiplicity="1"
parentXmlPath="Organization.contactParty00.contactPerson"
maximumMultiplicity="-1" conformance="R" multiplicityIndex="0"
minimumSupportedLength="0">

 <type name="EN" isEnabled="true" parents="ANY">

 <dataField name="suffix" type="en.suffix" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isOptionChosen="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-
2">

 <type name="en.suffix" isEnabled="true" parents="ENXP">

 <dataField name="mediaType" type="cs" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isAttribute="true" />

 <dataField name="representation"
type="BinaryDataEncoding" max="-2" isValid="true" isEnabled="true"
title="MIF Data Field Properties" isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isAttribute="true" />

 <dataField name="integrityCheckAlgorithm"
type="IntegrityCheckAlgorithm" max="-2" isEnabled="true" title="MIF
Data Field Properties" isProhibited="true" isSimple="true" min="-2"
isAttribute="true" />

 <dataField name="language" type="cs" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isSimple="true"

caAdapter 4.0 User’s Guide

138

parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isOptional="true" isAttribute="true" />

 <dataField name="thumbnail" type="ED" max="0" title="MIF
Data Field Properties" min="0" />

 <dataField name="compression" type="CompressionAlgorithm"
max="-2" isEnabled="true" title="MIF Data Field Properties"
isProhibited="true" isSimple="true" min="-2" isAttribute="true" />

 <dataField name="nullFlavor" type="NullFlavor" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isOptional="true" isAttribute="true" />

 <dataField name="partType" type="EntityNamePartType"
max="-2" isValid="true" isEnabled="true" title="MIF Data Field
Properties" isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isAttribute="true" />

 <dataField name="integrityCheck" type="bin" max="-2"
isEnabled="true" title="MIF Data Field Properties" isProhibited="true"
isSimple="true" min="-2" isAttribute="true" />

 <dataField name="reference" type="TEL" max="0" title="MIF
Data Field Properties" min="0" />

 <dataField name="qualifier"
type="set_EntityNamePartQualifier" max="-2" isValid="true"
isEnabled="true" title="MIF Data Field Properties" isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="-2" isOptional="true" isAttribute="true" />

 <dataField name="inlineText" max="1" isValid="true"
isEnabled="true" title="MIF Data Field Properties"
isOptionChosen="true" isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00.suffix"
min="1" />

 </type>

 </dataField>

 <dataField name="nullFlavor" type="NullFlavor" max="-2"
isValid="true" isEnabled="true" title="MIF Data Field Properties"
isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-
2" isOptional="true" isAttribute="true" />

 Chapter 11 caAdapter File Types

 139

 <dataField name="inlineText" max="1" isValid="true"
isEnabled="true" title="MIF Data Field Properties"
isOptionChosen="true" isSimple="true"
parentXmlPath="Organization.contactParty00.contactPerson.name00"
min="1" />

 <dataField name="delimiter" type="en.delimiter" max="-2"
isValid="true" title="MIF Data Field Properties"
parentXmlPath="Organization.contactParty00.contactPerson.name00" min="-
2" />

 <dataField name="validTime" type="IVL_TS" max="-2"
isValid="true" title="MIF Data Field Properties"
parentXmlPath="Organization.contactParty00.contactPerson.name00"
min="0" />

 </type>

 </attribute>

 </class>

 </association>

</class>

HL7 v2 Specifications
The HL7 v2 message specification is described in four kinds of resource files, i.e. Message
Structure, DataTypeSpec, DefinitionTable, SegmentAttributeTable. caAdapter requires all
four file collections to be able to parse HL7 v2 messages. Figure 11-1 shows the directory
structure where the resources files are stored.

caAdapter 4.0 User’s Guide

140

Figure 11-1 Resource Directory Structure

Message Structure

The Message Structure directory contains the information of the HL7 v2 message. The
directory is organized by a collection of DAT files with file names corresponding to message
type of the HL7 v2 message. ‘ADT_A03’ is a message type and the ‘ADT_A03.DAT’ is the
data file. This DAT file represents the order of segments and represents the required and
optional segments.

Figure 11-2 Contents of “RTB_Z78.DAT”message structure

DataTypeSpec

This directory contains DAT files with the file names corresponding to the data type. For example:
AD is a datatype for representing the address object. The corresponding file in the directory has a
physical file with the name “AD.DAT”. The content of “AD.DAT” is shown below in Figure 11-3.
The position, datatype (e.g. ST for String and ID for Identification), and description of each field
are listed.

 Chapter 11 caAdapter File Types

 141

Figure 11-3 Contents of “AD.DAT”data type

Segment Attribute Table

The segment attribute table represents the structure of the Message Header (MSH) segment. It
shows the fields, data types, positions, repeating fields, and index of each field for the MSH
segment. Figure 11-4 shows an example of a Segment Attribute Table.

Figure 11-4 Contents of “MSH.DAT”segment information

Definition Table

The definition table stores the HL7 v2 vocabulary information for each segment in the
message. For example, in the 9901.DAT file, shown in Figure 11-5, ‘ABS’ segment is
represented as ‘Abstract’ and ‘’DB1’ as ‘Disability’.

caAdapter 4.0 User’s Guide

142

Figure 11-5 Contents of “9901.DAT”segment information

SDTM Data Files
A Study Data Tabulation Module (SDTM) text file consists of the mapped data elements from the
CSV file. The file has a .txt extension. This text file is created by the SDTM transformation
service. For each mapped source field in a segment in the scs file, a record will be created
keeping the parent-child relationship intact. This is accomplished by prefixing the path information
to each row in the CSV file. The transformation service engine will fetch values for all the fields in
the specified path.

For example, the converted CSV file is transformed by the transformation service as shown
below.

“\SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\S

UPPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231\ASSIGNEDPERSON_5112311^D

oeighty,Conrard,D.”

The field name is ‘ASSIGNEDPERSON_5112311’ and the value is
‘Doeighty,Conrard,D.’ but the parent segment for this particular record are as listed
below:
1. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SU

PPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231\ASSIGNEDPERSON_5112311^Do
eighty,Conrard,D.

 Chapter 11 caAdapter File Types

 143

2. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SU
PPLY_5112\AUTHOR_51123\ASGNDENTT090000_511231

3. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SU
PPLY_5112\AUTHOR_51123\

4. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\SU
PPLY_5112\

5. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\INVESTIGATIVESUBJECT_511\
6. \SourceTree\INVESTEVN\TRIGGER_5\REACTION_51\
7. \SourceTree\INVESTEVN\TRIGGER_5\
8. \SourceTree\INVESTEVN\
9. \SourceTree\

The transformation service checks for mapped fields in any of the parent segments. If a
mapping segment exists, the corresponding value from the CSV file will be set in the same
record in the resulting SDTM .txt file.

Figure 11-6 Contents of SDTM Text File

SDTM Meta Data Files
SDTM metadata file, also called Case Report Tabulation Data Definition Specification
(define.xml), describes the data exchange structure for the different domains. Sample
define.xml can be found at CDISC web site:http://www.cdisc.org/models/def/v1.0/index.html.
The following is a sample section of the define.xml file downloaded form CDISC.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- ***
-->
<!-- File: defineexample1.xml
-->
<!-- Date: 28-01-2005
-->
<!-- Author: Clinical Data Interchange Standards Consortium (CDISC)
-->
<!-- Description: This is an example define.xml document which … the
Case -->
<!-- Report Tabulation Data Definition Specification Version 1.0.0
-->
<!-- ***
-->
<ODM
 xmlns="http://www.cdisc.org/ns/odm/v1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:def="http://www.cdisc.org/ns/def/v1.0"
 xsi:schemaLocation="http://www.cdisc.org/ns/odm/v1.2 define1-0-0.xsd"
 FileOID="Study1234"
 ODMVersion="1.2"
 FileType="Snapshot"

caAdapter 4.0 User’s Guide

144

 CreationDateTime="2004-07-28T12:34:13-06:00">
<Study OID="1234">
 <GlobalVariables>
 <StudyName>1234</StudyName>
 <StudyDescription>1234 Data Definition</StudyDescription>
 <ProtocolName>1234</ProtocolName>
 </GlobalVariables>
 <MetaDataVersion OID="CDISC.SDTM.3.1.0"

Function Specification

Function Specification Overview

The function specification is used as a guide for function objects to read the function
specification and determine what objects to call to execute a function (for example, the
concatenation function). The function specification also stores data points for rendering the
function graphical representation within the mapping tool. It uses the following types of
nested elements:

1. <function>
2. <group name>
3. <function name>
4. <inputs>
5. <datapoint>
6. <outputs>

Following is an example of a function specification file (core.fls). See the {home
directory}\map\functions directory for the entire file.

<?xml version="1.0"?>

<functions>

 <group name="constant" xmlPath="constant">

 <function name="constant" xmlPath="constant.constant">

 <outputs>

 <datapoint pos="0" name="constant" datatype="string"
xmlPath="constant.constant.outputs.0"/>

 </outputs>

 </function>

 <!--<function name="saveValue" xmlPath="e34f7420-09db-11da-
8gd4-io90d451x7h5">

 <inputs>

 <datapoint pos="0" name="save" datatype="string"
xmlPath="e35g7420-09db-11da-8ge5-io90d451x7k6"/>

 Chapter 11 caAdapter File Types

 145

 </inputs>

 <outputs>

 <datapoint pos="0" name="dummy" datatype="string"
xmlPath="e37i7420-09db-11da-8gg9-io90d451x7m8"/>

 </outputs>

 </function>

 <function name="readValue" xmlPath="e36h7420-09db-11da-8gf6-
io90d451x7l7">

 <outputs>

 <datapoint pos="0" name="read" datatype="string"
xmlPath="e37i7420-09db-11da-8gg7-io90d451x7m8"/>

 </outputs>

 </function> -->

 </group>

 <group name="date" xmlPath="date">

 <function name="changeFormat" xmlPath="date.changeFormat">

 <inputs>

 <datapoint pos="0" name="fromFormat" datatype="string"
xmlPath="date.changeFormat.inputs.0"/>

 <datapoint pos="1" name="dateIn" datatype="string"
xmlPath="date.changeFormat.inputs.1"/>

 </inputs>

 <outputs>

 <datapoint pos="0" name="dateOut" datatype="string"
xmlPath="date.changeFormat.outputs.0"/>

 </outputs>

 <implementation
classname="gov.nih.nci.caadapter.common.function.DateFunction"
method="changeFormat"/>

 </function>

 <function name="countDays" xmlPath="date.countDays">

 <inputs>

 <datapoint pos="0" name="fromDate" datatype="string"
xmlPath="date.countDays.inputs.0"/>

caAdapter 4.0 User’s Guide

146

 <datapoint pos="1" name="toDate" datatype="string"
xmlPath="date.countDays.inputs.1"/>

 </inputs>

 <outputs>

 <datapoint pos="0" name="dayNumber" datatype="int"
xmlPath="date.countDays.outputs.0"/>

 </outputs>

 <implementation
classname="gov.nih.nci.caadapter.common.function.DateFunction"
method="countDays"/>

 </function>

</group>

… …

</functions>

Adding Functions to the Function Library

The function library provides a list of system defined functions that facilitate the data
transformation requirement. Functions are grouped by functional categories, e.g. math
group, string group, etc. It is required that each group has a unique name across the whole
function library, but the name of individual function is only required to be unique within its
defined group.

The design of the function library encompasses some extensibility to support user-
customized functions in the definition of the function library's xml schema. This version of
caAdapter does not provide a GUI utility to allow registering custom function libraries to the
Mapping Tool. However, advanced software engineers can update the function library
definition file, named core.fls, located in the {home directory}\etc directory, to
register or replace customized function implementations. After registration, the configuration
engineer needs to make sure the corresponding customized Java library is available on the
classpath. This insures that the mapping tool can locate the needed Java implementation
classes during the generation of HL7 v3 messages.

HL7 v3 Message
The HL7 v3 message is the end goal of using caAdapter. It is represented in xml. Following
is an example HL7 v3 message file (ExampleOutput1.xml).

<?xml version="1.0" encoding="UTF-8" ?>
- <COCT_MT090102.AssignedPerson xmlns="urn:hl7-org:v3"
classCode="ASSIGNED">
 <id root="2.16.840.1.113883.19.1" extension="12345" />
 <id root="2.16.840.1.113883.19.2" extension="23456" />
 <id root="2.16.840.1.113883.19.3" extension="34567" />
 <code code="NRS10" codeSystem="2.16.840.1.113883.19.1" />
- <addr use="WP">

 Chapter 11 caAdapter File Types

 147

 <streetAddressLine>123 Main St.Suite 500</streetAddressLine>
 <city>Rockville</city>
 <state>MD</state>
 <postalCode>20852</postalCode>
 </addr>
- <addr>
 <streetAddressLine>456 Washington BlvdSuite 1000</streetAddressLine>
 <city>Washington</city>
 <state>DC</state>
 <postalCode>20002</postalCode>
 </addr>
- <assignedPerson classCode="PSN" determinerCode="INSTANCE">
- <name use="L">
 <family>Shang</family>
 <given>Lee</given>
 </name>
 </assignedPerson>
- <representedOrganization classCode="ORG" determinerCode="INSTANCE">
 <id root="2.16.840.1.113883.19.4" extension="1111GHHMO" />
 <id root="2.16.840.1.113883.19.5" extension="2222" />
 <name>Good Health HMO</name>
 <name>Good Health Radiology</name>
 <name>GHHMOR</name>
- <addr use="WP">
 <streetAddressLine>456 Washington BlvdSuite 1000</streetAddressLine>
 <city>Washington</city>
 <state>DC</state>
 <postalCode>20002</postalCode>
 </addr>
- <addr>
 <streetAddressLine>567 Empire Ave.Suite 10000</streetAddressLine>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10118</postalCode>
 </addr>
 </representedOrganization>
 </COCT_MT090102.AssignedPerson>

CSV to HL7 v3 Map Specification
A CSV to HL7 v3 map specification describes the relationship between components via links
and/or views. It has the following main elements:

1. <components>
2. <links>

3. <source>

4. <target>

5. <linkpointer>

6. <views>

A component is a reference to a resource that exists in the system prior to the mapping. A
function component is an algorithm between two (or more) pieces of data.

caAdapter 4.0 User’s Guide

148

Following is a part of a map specification file (150003.map) example. See the {home
directory}\workingspace\examples\150003 for the entire file.

<?xml version="1.0" encoding="UTF-8"?>

<mapping version="1.2">

 <components>

 <component kind="scs" location="150003.scs" type="source"/>

 <component kind="h3s" location="150003.h3s" type="target"/>

 </components>

 <links>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORG_CODE"/>

 </source>

 <target>

 <linkpointer kind="h3s"
xmlPath="Organization.contactParty00.contactPerson.name00.inlineText"/>

 </target>

 </link>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORGID.Root"/>

 </source>

 <target>

 <linkpointer kind="h3s"
xmlPath="Organization.contactParty00.id00.extension"/>

 </target>

 </link>

 <link>

 <source>

 <linkpointer kind="scs" xmlPath="ORGS.ORGID"/>

 </source>

 <target>

 <linkpointer kind="h3s"
xmlPath="Organization.contactParty00"/>

 </target>

 </link>

 </links>

 <views>

 Chapter 11 caAdapter File Types

 149

 <view component-id="source.scs.0" height="0" width="0" x="0"
y="0"/>

 <view component-id="target.h3s.0" height="0" width="0" x="0"
y="0"/>

 </views>

</mapping>

Object to Database Map Specification
An object to database map specification describes the relationship between
objects/attributes and database tables/columns via links. It has the following main elements:

1. <components>

2. <links>

A component is a reference to an xmi file that exists in the system prior to the mapping. The
location attribute of the component specifies the exact name and location of that xmi file.

A link describes a mapping for an object, an attribute or an association. A link element has a
type and datatype attribute.

If the type value is “dependency “, the <source> sub-element describes an object to be
mapped, and the <target> sub-element describes the target table that will be mapped to.

 <link type="dependency" parent="null">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene</source>

 <target>Logical View.Data Model.GENE</target>

 </link>

If the type value is “attribute “, the <source> sub-element describes an attribute to be
mapped, and the <target> sub-element describes the target table column that will be
mapped to.

 <link type="attribute" datatype="String">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.locusLinkSummary</source>

 <target>Logical View.Data Model.GENE.LOCUS_LINK_SUMMARY</target>

 </link>

If type value is “association “, this section describes the one-to-one or one-to-many
association, the <source> sub-element describes an association attribute to be mapped,
and the <target> sub-element describes the target foreign key column that will be mapped
to.

 <link type="association">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.chromosome</source>

caAdapter 4.0 User’s Guide

150

 <target>Logical View.Data Model.GENE.CHROMOSOME_ID</target>

 </link>

If the type value is “manytomany “, the section describes the many-to-many association. The
<source> sub-element describes an association attribute to be mapped, and the <target>
sub-element describes the target foreign key column that will be mapped to.

 <link type="manytomany">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Sequence.geneCollection</source>

 <target>Logical View.Data Model.GENE_SEQUENCE.GENE_ID</target>

 </link>

Following is a part of a map specification file (example.map) example. See the {home
directory}\workingspace\examples\Object-2-DB-Example for the entire file.

<?xml version="1.0" encoding="UTF-8"?>

<mappings type="sdkintegration">

 <components>

 <component location="D:\projects\hl7sdk-
new\workingspace\sample.xmi" />

 <component location="D:\projects\hl7sdk-
new\workingspace\sample.xmi" />

 </components>

 <link type="dependency" parent="null">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene</source>

 <target>Logical View.Data Model.GENE</target>

 </link>

 <link type="dependency" parent="null">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Taxon</source>

 <target>Logical View.Data Model.TAXON</target>

 </link>

 … …

 <link type="attribute" datatype="String">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.locusLinkSummary</source>

 <target>Logical View.Data Model.GENE.LOCUS_LINK_SUMMARY</target>

 Chapter 11 caAdapter File Types

 151

 </link>

 <link type="attribute" datatype="String">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.OMIMID</source>

 <target>Logical View.Data Model.GENE.OMIM_ID</target>

 </link>

……

 <link type="association">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.taxon</source>

 <target>Logical View.Data Model.GENE.TAXON_ID</target>

 </link>

 <link type="association">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.chromosome</source>

 <target>Logical View.Data Model.GENE.CHROMOSOME_ID</target>

 </link>

 <link type="manytomany">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Sequence.geneCollection</source>

 <target>Logical View.Data Model.GENE_SEQUENCE.GENE_ID</target>

 </link>

 <link type="manytomany">

 <source>Logical View.Logical
Model.gov.nih.nci.cabio.domain.Gene.libraryCollection</source>

 <target>Logical View.Data Model.LIBRARY_GENE.LIBRARY_ID</target>

 </link>

… …

</mappings>

This version of caAdapter, although still supports the map file, it no longer requires it. All
mapping specifications are now stored in the xmi file as shown in Figure 11-7.

caAdapter 4.0 User’s Guide

152

Figure 11-7 Mapping Specifications in the xmi file

 153

Appendix A caAdapter Example Data
Example data are included in the caAdapter distribution. You can use the example data to
become acquainted with the mapping tool or APIs before using your own data. Example
data are located at the {home directory}\workingspace\examples
directoryexamples directory (for example,
C:\caadapter\workingspace\examples). The example data directory structure is
shown in Figure A-1.

Figure A.1 Example data directory structure

The examples directory contains small (090102), medium (040002) and large
(040001040011) sample HL7 v3 message files. The large HL7 v3 message example is an
ICSR message. The other directories contain a subset of this data. For more information on
mapping scenarios see the caAdapter Mapping Rules documentation.

The Object-2-DB-Example directory contains ‘sample.map’, ‘sample.xmi’,
‘sample_annotated.xmi’ files.

The ‘SDTM_Mapping Examples’ directory contains ‘define.xml’, ‘Demographics.CSV’,
‘Demographics.map’, ‘Demographics.scs ‘ and ‘SDTM_DM_Output.txt’ files.

The V2V3 Mapping Examples directory contains ‘ADT_A03_to_402003’, ‘HL7.Messages’,
‘version2.4’. The ‘version2.4’ contains ‘DataTypeSpec’, ‘DefinitionTable, ‘MessageStructure’
and ‘SegmentAttributeTable’.

caAdapter 4.0 User’s Guide

154

 155

Appendix B References

Articles
1. Java Programming: http://java.sun.com/learning/new2java/index.html
2. Extensible Markup Language: http://www.w3.org/TR/REC-xml/
3. xml Metadata Interchange: http://www.omg.org/technology/documents/formal/xmi.htm

caBIG Material
1. caBIG: http://cabig.nci.nih.gov/
2. caBIG Compatibility Guidelines: http://cabig.nci.nih.gov/guidelines_documentation

caCORE Material
1. NCI CBIIT: http://ncicb.nci.nih.gov

2. caCORE: http://ncicb.nci.nih.gov/core

3. caBIO: http://ncicb.nci.nih.gov/core/caBIO

4. caDSR: http://ncicb.nci.nih.gov/core/caDSR

HL7 Concepts and Material
1. HL7: http://www.hl7.org/
3. HL7 Tutorial: http://trials.nci.nih.gov/projects/infrastructureProject/caAdapter/HL7_Tutorial

4. caAdapter: http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caadapter)

5. HL7 Reference Information Model: https://www.hl7.org/library/data-
model/RIM/C30202/rim.htm

6. HL7 Vocabulary Domains: http://www.hl7.org/library/data-
model/RIM/C30123/vocabulary.htm

7. HL7 Version 3 Standard: http://www.hl7.org/v3ballot/html/welcome/environment/index.htm
8. UCUM: http://aurora.regenstrief.org/UCUM/ucum.html

Software Products
1. Java: http://java.sun.com

2. Ant: http://ant.apache.org/

caAdapter 4.0 User’s Guide

156

Study Data Tabulation Model (SDTM) Concepts and Material
1. Java: http://www.cdisc.org/

 157

Glossary
The following table contains a list of terms used in this document, with accompanying
definitions.

Term Definition

CDMS Clinical Data Management System.

CSV Comma Separated Value

DMIM Domain Message Information Model. A subset of the RIM that
includes RIM class clones, attributes, and associations that can be
used to create messages for a particular domain (a particular area of
interest in healthcare).

EA Enterprise Architect. UML Modeling Tool.

HL7 Health Level 7 (http://www.hl7.org/) is one of several American
National Standards Institute (ANSI)-accredited Standards Developing
Organizations (SDOs) operating in the healthcare arena.

MIF Model Interchange Format. An xml representation of the information
contained in an HL7 specification, and is the format that all HL7 v3
specification authoring and manipulation tools will be expected to
use.

MT Message Type. The specification of an individual message in a
specific implementation technology.

OID HL7 v3 artifacts used to identify coding schemes and identifier
namespaces.

RIM Reference Information Model. The foundational Unified Modeling
Language (UML) class diagram representing the universe of all
healthcare data that may be exchanged between systems.

RMIM Refined Message Information Model. A subset of a DMIM that is
used to express the information content for an individual message or
set of messages with annotations and refinements that are message
specific.

SDK caCORE Software Development Kit or caCORE SDK, a data
management framework designed for researchers who need to be
able to navigate through a large number of data sources. caCORE
SDK is NCI CBIIT's platform for data management and semantic
integration, built using formal techniques from the software
engineering and computer science communities.

caAdapter 4.0 User’s Guide

158

Term Definition

SDTM Study Data Tabulation Model. A set of standards developed by the
Clinical Data Interchange Standards Consortium (CDISC).

UCUM Unified Code for Units of Measure

UML Unified Modeling Language

XML Extensible Markup Language

 159

Index

.
.fls extension, 129
.h3s extension, 129
.map extension, 129
.scs extension, 129
.xml extension, 129

A
Abstract data types

updating, 38
Add Clone option, 33
Add Function option, 52
Add Multiple Clone option, 34
Adding

clones to HL7 v3 Specification, 33
fields in CSV, 25
function to map specification, 52
functions, 113, 144
functions to function library, 113, 144
input to a function, 52
multiple attributes on HL7 v3 specification, 35
multiple clones on HL7 v3 specification, 34
segments in CSV, 25

Adverse event
reporting, 14

ant compile, 11
ant launchui, 11
ANY label, 38
API, caAdapter, 116
Architecture

caAdapter core engine, 6
mapping tool, 7

Artifacts, HL7, 9
Attribute, HL7 v3 specification, 29

B
Binary distribution, starting, 11
build directory, 115
Building

object graph, 14
Business rules

CSV specification, 22
HL7 v3 message, 55
HL7 v3 specification, 27
map specification, 43

C
caAdapter

overview, 5
caAdapter

mapping tool architecture, 7
caAdapter

APIs, 14
caadapter.log file, 119
caadapter_ui.jar, 11
caBIG solution, 5
caCORE, caAdapter integrates, 5
Cardinality, 34
CDMS, operational scenario, 15
changeFormat date function, 53
Changing logging properties, 119
Choice

boxes, 38
selected, 38
unselected, 38

Clinical data, 5
Clone

adding, 33
Attribute Object Properties panel, 49
HL7 v3 specification, 29

Clone List dialog box, 33, 39
Close all files, 19
Close file, 19
codeSystem data type, 33
Component, defined, 145, 147
Components of caAdapter, 5
Constant function, 53
Converting data file into HL7 v3 message, 57, 60
Core engine architecture, 6
core.fls file, 113, 144
Creating

CSV Specification, 23
HL7 v3 message, 57, 60
HL7 v3 Specification, 30
map specification, 45
mapping link, 45

CSV data file format, 130
CSV Field Properties, 47
CSV specification

business rules, 22
file example, 131
format, 130
tab overview, 23
updating, 24

caAdapter 4.0 User’s Guide

160

D
Data exchange specifications, 8
Data type

element, 29
field, 38
specification, 8

Date function, changeFormat, 53
Default values

defining, 31
Defining

default data, 31
mappings, 17
object identifiers, 32
units of measure, 31

Delete button, 26
Deleting

fields in CSV, 26
map lines, 47
segments in CSV, 25

DMIM, defined, 9
docs directory, 115
Dragging-and-dropping elements in CSV, 26

E
Edit Constant option, 53
Editing

constant function, 53
field name, 25
fields in CSV, 26
segment name, 25
segments in CSV, 25

Element
types of HL7 v3 specification, 29

ERROR message, 22
etc directory, 116
EVS, validation, 14
Example

CSV specification file, 131
data, 115, 116
function specification file, 103, 111, 142
HL7 v3 message file, 144
HL7 v3 specification, 132
map specification file, 146, 148
OIDs, 32

examples directory, 115, 116, 133, 146, 148
Excel spreadsheet, 55
Existing CSV specification, 24
Exit caAdapter, 19
Extensions, file descriptions, 129

F
FATAL message, 22
FDA, operational scenario, 15
Field properties, 25

File
New CSV Specification, 23
New HL7 v3 Message, 57, 60
New HL7 v3 Specification, 30
New Map Specification, 45
Open HL7 v3 Specification, 31
Open CSV Specification, 24
Open Map Specification, 45
Save, 27, 42, 54, 59, 61
Save As, 27, 42, 54, 59, 61
Validate, 26, 42, 54

File extensions, 129
File options, 18
File types, 101, 129
Format

CSV data file, 130
CSV specification, 130
function specification, 102, 142
HL7 v3 message, 129, 144
map specification, 145, 147
of files, 129

Four pillars of semantic interoperability, 8
Function

component, defined, 145
group properties panel, 50
library, 113, 144
panel, defined, 51
properties panel, 50, 51
requirements, 113, 144
specification format, 102, 110, 142
specification, example file, 103, 111, 142

G
Generating

CSV Report, 27
CSV specification, 17
HL7 specification, 17
HL7 v3 messages, 57, 60
Map Report, 55

Goal of HL7, 8
gov.nih.nci.hl7.map package, 117

H
Help option, 20
HL7

artifacts, 9
assigned OIDs, 32
choice boxes, 38, 39, 41
key goal, 8
overview, 7

HL7 v2 to HL7 v3 Mapping, 65
HL7 v3 message

business rules, 55
creating, 57, 60

 161

defined, 55
dialog box, 57, 60
Example file, 144
format, 144
overview, 56, 60
tab features, 58

HL7 v3 specification
attribute properties panel, 49
data type field properties panel, 49
dialog box, 30
element options, 30
example file, 132
format, 137
tab overview, 28
validating, 42

I
ICSR

operational scenario, 15
INFO message, 22
inlineText data type field, 31

J
JdomMessageTypeLoader, 116

L
lib directory, 115, 116
Link

defined, 43
properties panel, 48

Log files, 119
logging.properties file, 119

M
Mandatory

values, 32
Map specification

business rules, 43
creating, 45
example file, 146, 148
format, 145, 147
internal reference, 130
opening, 45
status, 55
tab overview, 44
updating, 45
validating, 54

MapGenerateResult class, 117
Mapping

allowed symbol, 46
functions, 7

line, 46
Mapping tool

architecture, 7
basic steps, 17
defined, 5
interface, 18

Menu bar, 18
Message builder, 6
Message Level, 21
Message parser, 6
Message Service Integration, defined, 6
Message types, supported, 31
Messages, types of errors, 21
Meta Data Loader, 6, 116
MIF

defined, 9
file, 116
format, 116
HL7 file, 15

Move Down button, 24
Move Up button, 24
Moving a segment in CSV, 26
MT, defined, 9
Multiples in HL7 v3 specification, 34

N
NCI CBIIT, 5

training resources, 9
New CSV specification dialog, 23
New file, 19
Next button, 59, 61

O
OID

defining, 32
registry page, 32

Open CSV specification dialog, 24
Open Data File dialog box, 57, 61
Open HL7 v3 Specification File dialog box, 31
Open Map Specification dialog box, 57, 61
Open Source File dialog box, 45
Open Target File dialog box, 45
Opening

CSV specification, 24
file, 19
HL7 v3 specification, 31
map specification, 45
new file, 20

Optional associations, 33

P
Parsing

caAdapter 4.0 User’s Guide

162

message, 14
Previous button, 59, 61
Printing, validation messages, 21
Properties

panel, 47

Q
QTY label, 38

R
Regenerate button, 59, 61
Registering custom function libraries, 113
Remove Clone option, 34
Remove Multiple Attribute option, 35, 36
Remove Multiple Clone option, 35
Removing, multiple attributes from HL7 v3

specification, 35, 36
Removing, multiple clones from HL7 v3

specification, 35
Report

CSV example, 27
generate map report, 55
generate report, 27
Map specification, 55
option, 20

Reset button, 26
Resizing panels, 18
RIM

defined, 9
used in four pillars, 8

RMIM
defined, 9

S
Save as file, 19
Save file, 19
Saving

CSV Specification, 27
HL7 v3 Message, 59, 61
HL7 v3 Specification, 42
map specification, 54
validation messages, 21

schema directory, 115
Scroll bars, 18
SDTM

Overview, 9
Segment

options, 25
properties, 24

Select Choice option, 39
Selected Choice for label, 39
Semantic interoperability, 8
SimpleDateFormat class, 53

Source distribution, starting, 11
Source specification, 22
Source specification, defined, 7
Starting, mapping tool, 11

T
Tab

CSV specification, 23
HL7 v3 message, 56, 60
HL7 v3 specification, 28
map specification, 44
open, 18
types of, 20

Target specification
types, 27

Target specification, defined, 7
Tool bar, 18, 20
Training, online tutorials, 9
Transformation Service, 117
Transformation Service, defined, 7
TransformationService class, 117
Transforming, into RIM object graph, 17

U
UCUM, units of measure, 31
Units of measure properties, 31
Updating

abstract data types, 38
CSV specification, 24
map specification, 45

User interface, defined, 7
User-defined default value, 31, 33
Using

date function, 53
Using functions in map specifications, 51

V
Validating

CSV, 26
CSV data against specialization, 27
CSV specification, 26
defined, 7
file option, 19
HL7 structural attributes, 118
HL7 v3 specification, 42
map specification, 54
purpose, 21
vocabulary using EVS, 14

Validation Messages dialog box, 54
Validation Messages panel, 21, 42
Validation services, defined, 6
Vocabulary domain, 8
Vocabulary validation, 118

 163

W
WARNING message, 22

Windows distribution, starting, 11
Windows layout, mapping tool, 18
workingspace directory, 115, 116

caAdapter 4.0 User’s Guide

164

